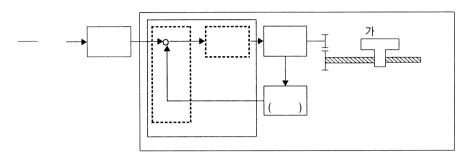

MITSUBISHI


```
OFF
           가
```

1.	AC				1-1
	1.1	AC			1 - 1
	1.2	AC			1 - 1
	1.3	MELS	SERVO		1-3
		1.3.1	MELSERVO		1-3
		1.3.2			1-3
		1.3.3			1 - 4
		1.3.4			1 - 5
	1.4	AC			1 - 6
		1.4.1			1 - 6
		1.4.2	AC		1 - 11
		1.4.3			1 - 14
2.	AC				2-1
	2.1				2-1
		2.1.1			2-1
		2.1.2		-	2-1
		2.1.3			2-4
	2.2	_			2-5
		2.2.1		1	2-5
		2.2.2			2-5
	2.3				2-6
		2.3.1	1		2-6
		2.3.2			2-7
	2.4				2-8
	2.5				2-9
		2.5.1			2-9
		2.5.2			2 - 15
	2.6				2 - 16
		2.6.1			
		2.6.2		ts	
	2.7				2-18
		2.7.1			2 - 18
		2.7.2			2 - 19

3.				3-1
	3.1			3 - 1
		3.1.1		3 - 1
		3.1.2		3 - 1
	3.2			3 - 1
	3.3			3-5
		3.3.1	/	3-5
		3.3.2	/	3-6
		3.3.3		3-7
	3.4			3-9
	3.5			3 - 11
		3.5.1		3 - 11
		3.5.2		3 - 12
4.		SERVO - J3		
	4.1			
	4.2			
	4.3			4 - 4
		4.3.1		4 - 4
		4.3.2		4-5
		4.3.3		4 - 13
		4.3.4		4 - 19
		4.3.5		4 - 31
		4.3.6		4 - 35
		4.3.7		4 - 42
		4.3.8		4 - 63
		4.3.9		4 - 65
		4.3.10		4 - 67
		4.3.11		4 - 67
		4.3.12		4 - 67
		4.3.13		4 - 67
		4.3.14	()	4 - 70
		4.3.15		4 - 73

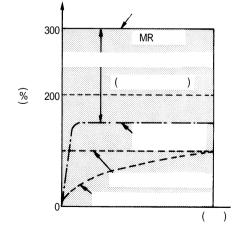

5.						5-1
	5.1	AC				5 - 1
		5.1.1				5 - 1
		5.1.2				5-2
	5.2	MR	J3	•		5-3
		5.2.1	•			5-3
		5.2.2	•			5 - 14
	5.3		•			5 - 18
		5.3.1		())	5 - 18
		5.3.2				5 - 20
		5.3.3				5 - 24
		5.3.4	MR Configu	urator		5 - 27
	5.4					5 - 37
		5.4.1				5 - 37
		5.4.2				5 - 40
		5.4.3				5 - 42
		5.4.4				5 - 47
		5.4.5				5 - 47
		5.4.6				5 - 54
6.						6-1
	6.1		가			6 - 1
		6.1.1		JL		6 - 1
		6.1.2	Т	Г		6 - 1
		6.1.3				6-2
	6.2					6 - 4
	6.3					6-5
		6.3.1	가 T	ā		6-5
		6.3.2	Т	Г d		6-5
		6.3.3				6-6
		6.3.4				6-7
		6.3.5				6-8
		6.3.6				6 - 12
	6.4					6 - 20

7.			, , ,	7-1	
	7.1			7 - 1	
	7.2			7-3	
	7.3			7 - 4	
		7.3.1		7 - 4	
		7.3.2		7-5	
		7.3.3		7-5	
•				0.4	
8.		•			
	8.1				
	8.2				
	8.3				
	8.4			8-5	
	8.5			8 - 12	-
	8.6			8 - 14	Ļ
		1.			- 1
		2.			-2
		3.		-	-6
		4.			- 10
		5.			- 14
		6.			- 23
		7. QI	D75D4 ()		- 25

MEMO

1. 1 AC

JIS() 「 , , ((,) (,) (,) (,) (AC), (AC), (AC),


1.1

1. 2 AC

 $(J \quad G \, D^2 \qquad), \qquad \qquad . \qquad , \qquad . \qquad . \qquad .$ $\qquad . \qquad \qquad . \qquad . \qquad . \qquad .$ $\qquad . \qquad . \qquad . \qquad .$ $\qquad . \qquad . \qquad . \qquad .$

(1)

. 1.2 가 가 가) 가 , 가 가

1.1

	1:1000~5000	1/1000 ,
	(1:10)	
		,
	가	· , (定)
	300% (150%)	가 300% . , 가 / ,
) ()		

(2) AC , 7h

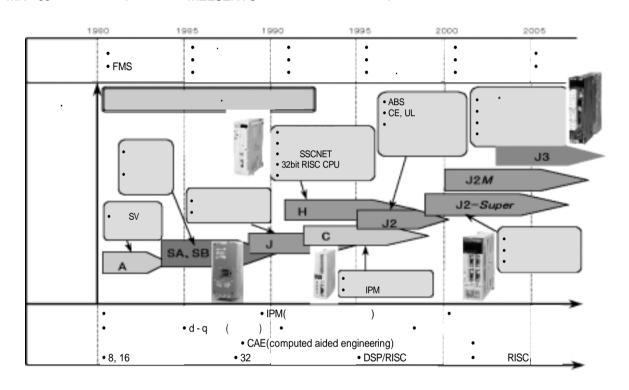
2 , (1)

: , , , (), (), ,

, AC 300% 가 () , 10ms 가・ 1 100 .

AC , (· ,DC) 가 * ,

, 가 가 , ()· ()


1. 3 MELSERVO

1.3.1 MELSERVO

1982 AC ,

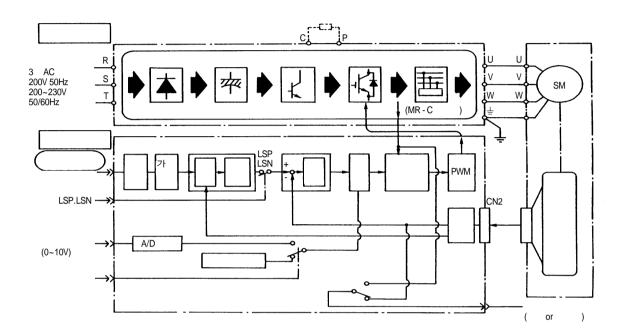
,

MR - J3 MELSERVO

1.3.2

MELSERVO 50W 55kW MR-J3 50W-55kW MR - J2 - Super 50W - 55kW 10 -MR - J2 50W - 3.5kW 30W MR - J2 - Jr MR - C 30W - 400W 100W 1000W 10kW 100kW

1.3.3

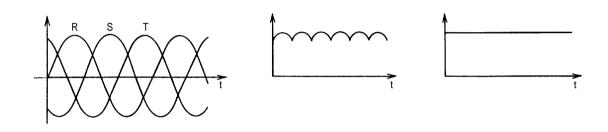

		MR-J3- A MR-J3- B MR-J3- T	MR-J2S- A MR-J2S- B MR-J2S-CP	MR-C A	MR - J2 - 03A5 MR - J2 - 03B5 MR - J2 - 03C5
		1			
		MR Configurator (MRZJW3 - SETUP211)	MR - J2 , ABS MR Configurator (MRZJW3 - SETUP111)	- (MRZJW3 - SETUP61)	MR - J2 DC24V - (MRZJW3 - SETUP61) DIN 7 ; 32 7 ;
		50W - 55kW	50W - 55kW	30W - 400W	10W - 30W
				(30W)	()
		262144 p/rev	131072 p/rev	4000 p/rev	8192 p/rev
		INC/ABS	INC/ABS	4000 p/rev INC	INC
		2000/3000	1000/2000/3000	3000	3000
(r/min)		3000/6000	1200/1500/2500/3000/4500	4500	10W - 20W : 5000 30W : 4500
(%)	300%	300%	100W 400% 300%	300%
		/ /	/ /	/ (2)	/ /
		900Hz (400W)	550Hz	200Hz	250Hz
P/C I/F					
		1:5000	1:5000	-	1:1000
I/F		DC24V		DC24V	DC24V
()	5	5	3	4
		4	4	4	4
		2CH (14bit)	2CH (8bit)		
		A, B, Z	A, B, Z	Z	A, B, Z
		가	가	가	가
		가	가	가	가
EN					
UL · cUL	-	LIE IVE	110 1450		
		• HF - KP	• HC - KFS		
		• HF - MP	• HA - MFS		
		• HF - SP	• HC - SFS	• HC DO	• HC - AQ
		• HC - RP • HC - UP	• HC - RFS • HC - UFS	• HC - PQ	▼ NO - AQ
		• HC - LP	• HC - LFS		
		• HA - LP	• HA - LFS		
		TIIA - LF	*IIM-LF3		

1.3.4

Г									
			(VV)	pulse/rev					
	- Ness	HC - AQ	10W - 30W	8192	INC	3000r/min	MR-J2- 5	IP55	•
		HC - MP	50W - 750W	262144	ABS/INC	3000r/min	MR - J3	IP65	• , ,
	LEEL	HC - MFS	50W - 750W	131072	ABS/INC	3000r/min	MR - J2S	IP55 (IP65)	• ,
		HC-PQ	30W - 400W	4000	INC	3000r/min	MR - C	IP44	•
		HF - KP	50W - 750W	262144	ABS/INC	3000r/min	MR - J3	IP65	• LCD, , X-Y
	Om	HC - KFS	50W - 750W	131072	ABS/INC	3000r/min	MR - J2S	IP55 (IP65)	• ,
	9	HF - SP	0.5kW - 7kW	262144	ABS/INC	1000r/min 2000r/min	MR - J3	IP67	•
		HC-SFS	0.5kW - 7kW	131072	ABS/INC	1000r/min 2000r/min 3000r/min	MR - J2S	IP65 (IP67)	• •X-Y
	200	HC - RP	0.75kW - 5kW	262144	ABS/INC	3000r/min	MR - J3	IP65	•
	- ·	HC-RFS	1kW - 5kW	131072	ABS/INC	3000r/min	MR - J2S	IP65 (IP67)	• ,
	A.	HC-LP	0.5kW - 3kW	262144	ABS/INC	2000r/min	MR - J3	IP65	• ,
		HC-UP	0.75kW - 5kW	262144	ABS/INC	2000r/min	MR - J3	IP65	•
	2.1	HC-UFS	0.1kW - 5kW	131072	ABS/INC	2000r/min 3000r/min	MR - J2S	IP65	• • 가
. 400		HA - LP	5kW - 55kW	262144	ABS/INC	1000r/min 1500r/min 2000r/min	MR - J3	IP44	•
400 V	1	HA - LFS	5kW - 55kW	131072	ABS/INC	1000r/min 1500r/min 2000r/min	MR - J2S	IP44	•

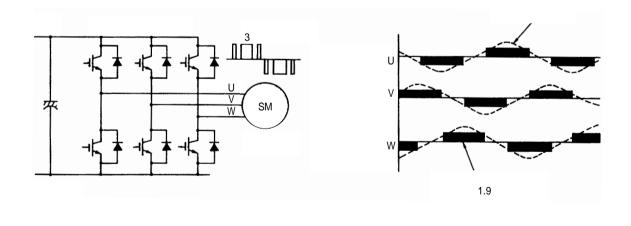
1. 4 AC

1.4.1


(1)

, (3 AC200~230V, 50/60Hz) (,)

, (IGBT) PWM · 3


, .

,

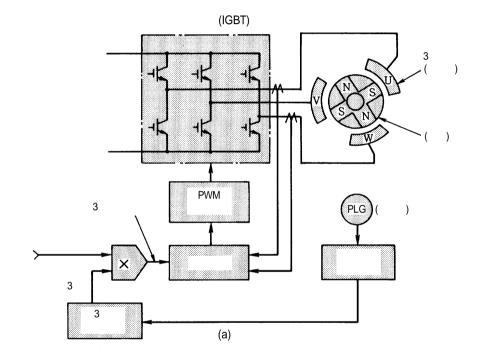
1.4

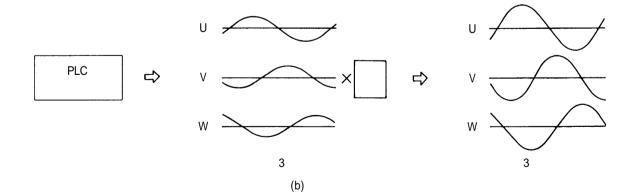
,

1.7	, (-	
, ,	(On)	, PWM ()
η D- -	~E1 II		
		1/11/11/11/11/11	
(a) 가		(b) 가	
	1.7 PWM		
4)			
1)		가 , , , 가가	,
		,)	
,	1	,	
가 ,	,	가	
2)			
	가 , , 0.4kW		
,	, 가 가	, 가	
,		,	
,	·	, 11kW	
,	((惰走量)) , -	
•			

1 - 8

, short circuit) , MR - C (2) (가 \mathcal{M} 가 가 , 가

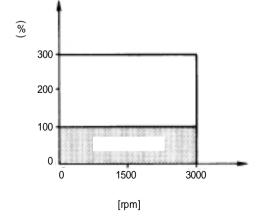

,


, (0~±10V)

· 3 가

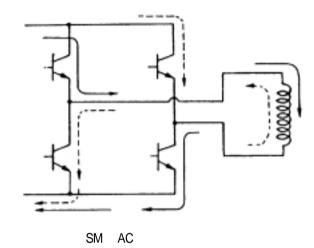
· , () 3

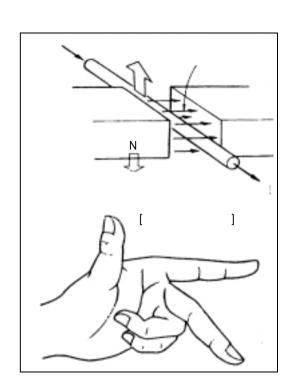
, () 3



(a) (b) E

1.9 PWM (MR-J3)

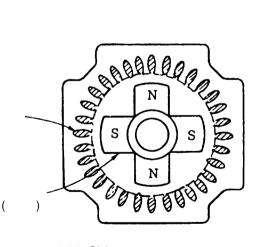

1.4.2 AC


(1) ・ ・ ・ ・ フト

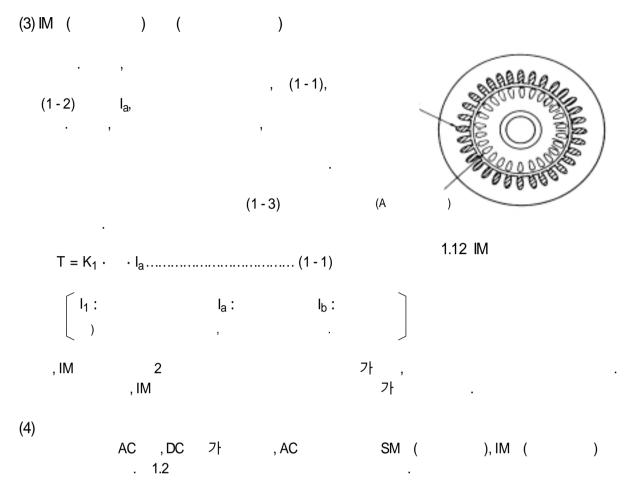
. ,

.SM ()AC ,

, ON OFF


, Т,

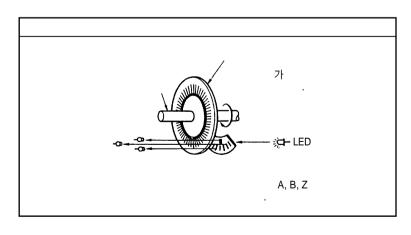
$$T = K_1 \cdot \cdot I_a$$
.....(1 - 1)

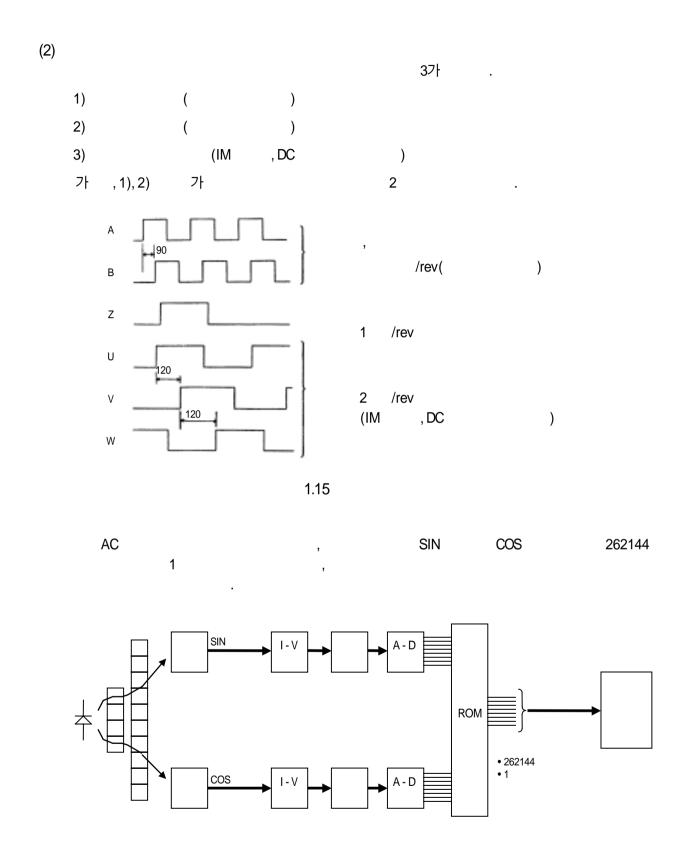

la ,

$$N = \frac{V - I_a \cdot Z}{K_2} \dots (1-2)$$

가 V .

1.11 SM




SM AC	・ (大), 가가 가 ·	가 DC 1 1 (減磁) 가
IM	・ ・ (大) ・	가DC 가 1 1
DC	가 가	, 가 가 , , (大) 가 (減磁) 가

IM V 55 (kW) 22 11 AC 0.1 0.01 1980 (S55) 1985 (S60) 2000 (H12) 1990 1995 (H2)(H7) 1.13

1.4.3 (,) , 가 . ,

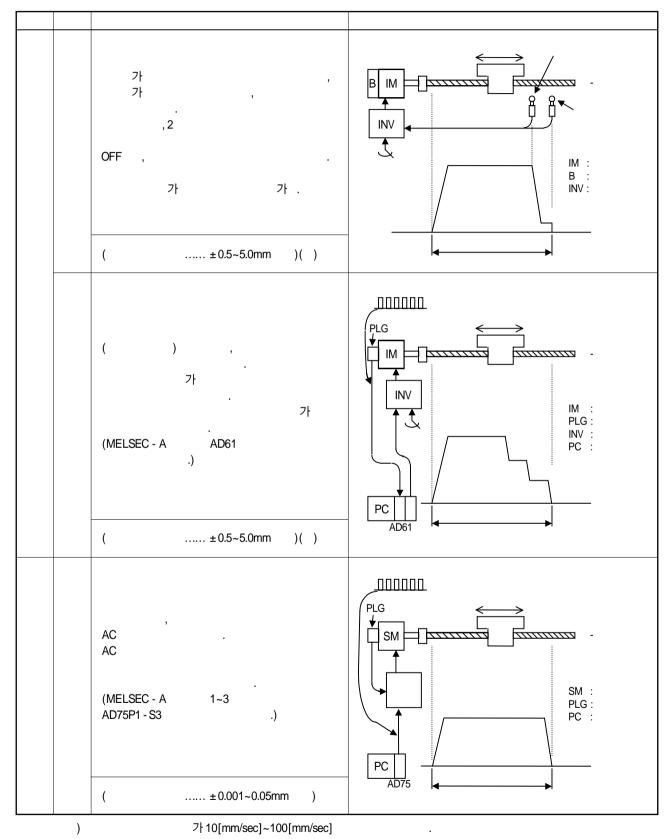
(1)

(3) 2 가 가 3.4 가 1.6 (4) , 가 (A, B) (2) 가 (7 (A, B)) 가 가 1.17 가

1 - 16

		(bit)	12	13	14	15	16	17	18	19	20
J3	- 3.5kW	INC/ABS									
J2-Super		INC/ABS									1kW
J2	- 750W	INC/ABS									
J2	1kW	INC/ABS									
	- 750W	INC									
l A	- 75000	ABS									
^	750W	INC									
	(超)	ABS									
	- 750W	INC									
В		ABS		100	000						
	750W	INC									
	(超)	INC/ABS		100	000						

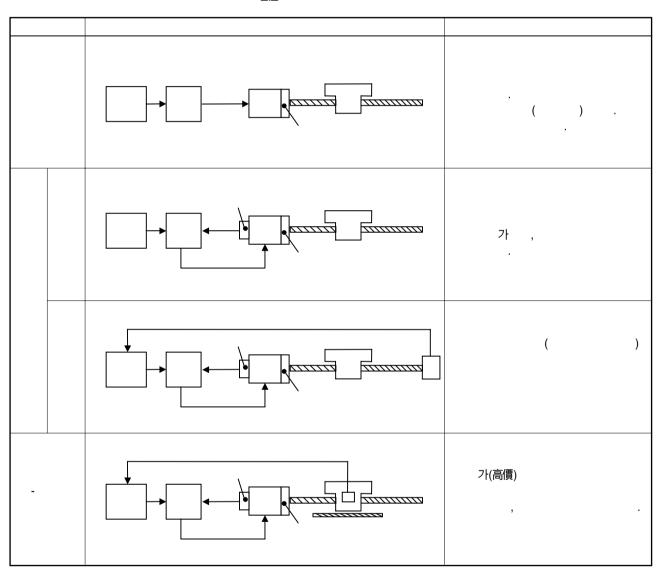
13bit(8192), 14bit(16384) 17bit(131072) 18bit(262144)


MEMO		

한국미쓰비시전기오토메이션(주)

C 가

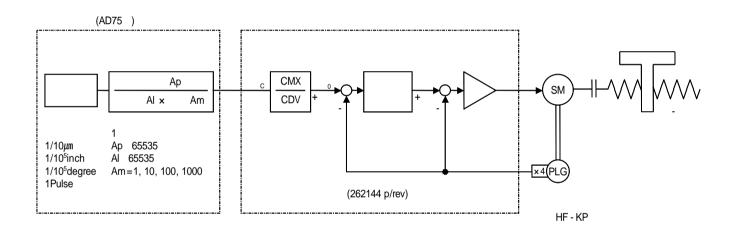
2. 1 2.1.1 (AC) , 가 가 (1) 가 , 가 SW 가 (2) , 2.1 2.1.2 (1)). 2.1 가 (橫軸) (縱軸) (mm/sec) (sec), (mm가 [mm/sec] S[mm] t [sec] D_2 E D Е D_1) (情走) 2.2 2.1 가 CDE (惰走) CDE E ,
CDE) , 2.2), C 가 (ED) (


		가	가	, 2.1
가 가 ,	, . 가		(가	
(2) 가		·	,	가 가 .
,	, 가			7
(3)	,			

2.1.3

, 2.2 가 . (가 , .)

2.2


AC MELSERVO ,

2. 2 AC

·

2.2.1 1

2.2.2

2.3

±1 ,

```
(1)
                                                          가
                                                                 가
                                                           (零)
                  262144p/rev MELSERVO - J3 HF - KP 1/2
                  .
131072 가 .
  (2)
    ., HF - KP 3000r/min , 1 3000 x 2
= 786.432 x 10<sup>6</sup> , 1 786.432 x 10<sup>6</sup>/60 = 13107.2 x 10<sup>3</sup> (13107.2 x 10<sup>3</sup>PPS
= 13107.2kpps )
                                                     3000 × 262144
  (3)
                                 가
                                                          가
2. 3
  2.3.1 1
     _0 = \frac{S}{P_{fo}} = \frac{S}{262144} [mm/pulse] ......(2-1)
  , P<sub>fo</sub>: 1
```

2.4 S

	(1) - ()	(2) - ()	(3) &
	PLG M PB	PLG M PB	PL I/n
1	S = P _B	$S = P_B \cdot \frac{Z_1}{Z_2} = P_B \cdot \frac{1}{n}$	$S = P_L \cdot Z \cdot \frac{1}{n}$ $Z:$
	(4)	(5) ()	(6) ,
	D V	Z V PC ·	Z
1	$S = \cdot D \cdot \frac{1}{n}$	$S = P_C \cdot Z \cdot \frac{1}{n}$ $Z:$	$S = P_T \cdot Z \cdot \frac{Z_1}{Z_2} = P_T \cdot Z \cdot \frac{1}{n}$ Z:

2.4 1 (S)

2.3.2

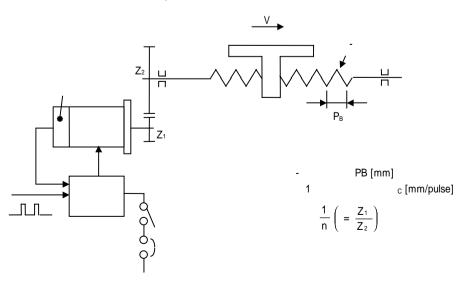
= + 7\ .
1 0(mm/pulse)

±1 가

 $_{0}$ $\left(\frac{1}{5} \sim \frac{1}{10}\right) \times$ (2-2)

가 .

2. 4


, V(mm/min) 2.5 가 -(2-3) .

N(r/min)

 $P_{B}(mm)$, 1/n (2~3)

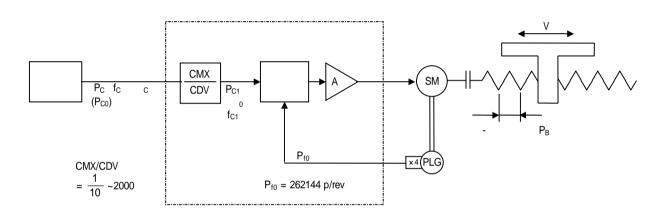
 $N = \frac{V}{S} = \frac{V}{P_B} \cdot n(r/min). \qquad (2-4)$

가 Nr(r/min)

2. 5

, カ 1 (2.3.1) (整合性) ,

가


,

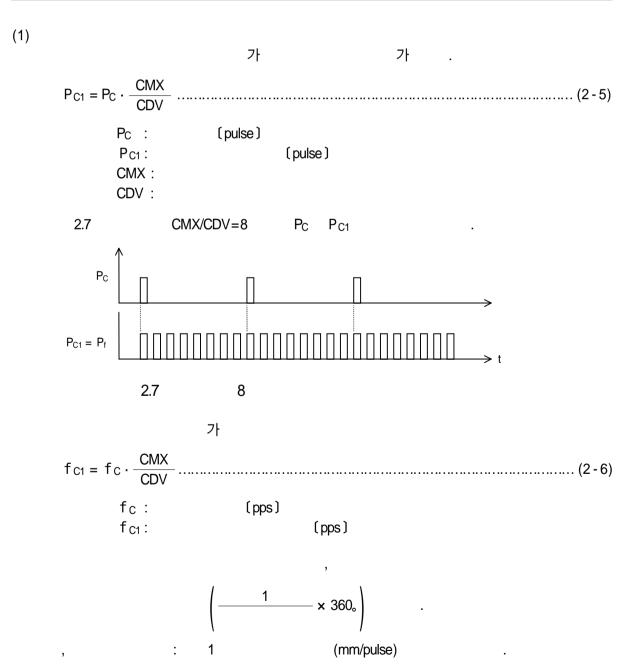
기고) 가

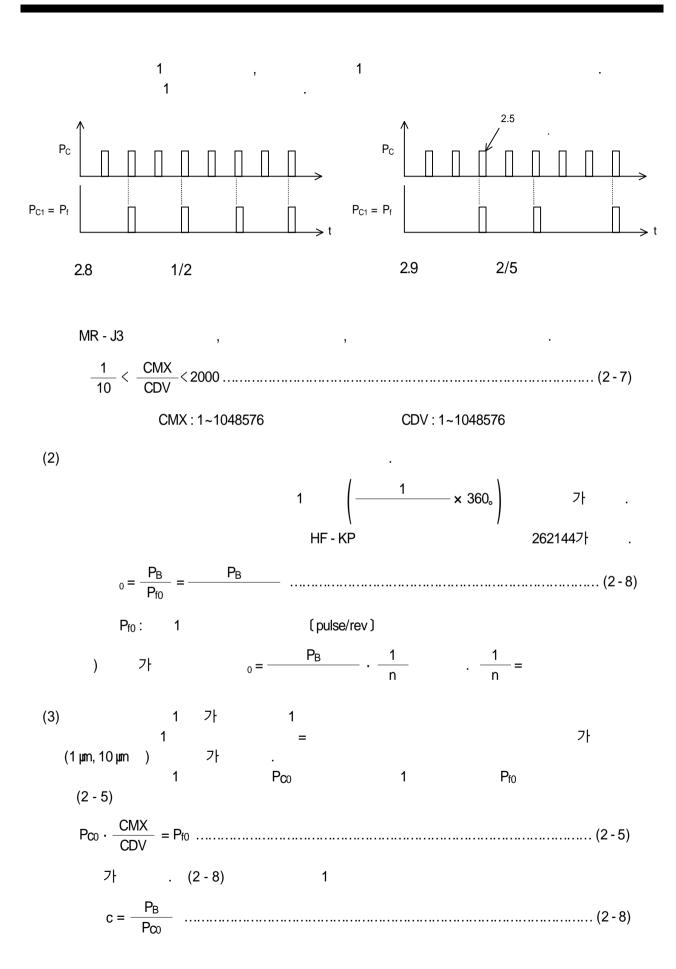
가

2.5.1

,

2.6


2.6 . .


 f_{C} : Pc: (pulse) (pps) f_{C1} : P_{C1}: (pulse) (pps) P_{f0}: 1 0: 1 (pulse/rev) (mm/pulse) 1 1 P_{C0}: c:

[pulse/rev] [mm/pulse]

CMX:

```
(1) 0 c 가 c 가 c (2) ((2-11)), 가 .
```

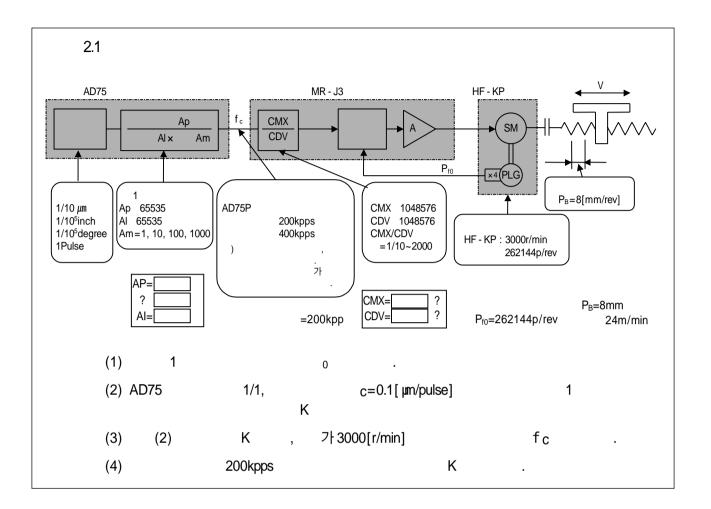

$$c = \frac{P_B}{P_{CO}} = \frac{P_B}{P_{I0}} \cdot \frac{CMX}{CDV} = 0 \cdot \frac{CMX}{CDV} \qquad (2-9)$$

$$\frac{CMX}{CDV} = \frac{c}{0} = c \cdot \frac{P_{I0}}{P_B} \qquad (2-10)$$

$$, 1 \qquad c \qquad (P_{I0}, P_B) \qquad 7!$$

$$(4) \qquad (f_B)^{7} \qquad (f_{C1}) \qquad f_{C7}^{7} \qquad f_{C1}^{7}$$

$$7! \qquad (f_{C1}) \qquad f_{F7}^{7} \qquad (2-11)$$


$$f_{C1} = f_C \cdot \frac{CMX}{CDV} = P_{I0} \cdot \frac{N}{60} \qquad (2-11)$$

$$f_C : \qquad (pps) \qquad (pps) \qquad (pps) \qquad (pps) \qquad (2-11)$$

$$f_{C1} : \qquad (pps) \qquad (pps) \qquad (pps) \qquad (2-11)$$

$$\frac{CMX}{CDV} = \frac{f_{C1}}{f_C} = \frac{1}{f_C} \cdot P_{I0} \cdot \frac{N}{60} \qquad (2-12)$$

$$\frac{CMX}{CDV} = \frac{1}{2000000} \times 262144 \times \frac{3000}{60} = \frac{8192}{125}$$

(1)
$$(2-8)$$

$$0 = \frac{P_B}{P_{f0}} = \frac{8}{262144} \quad 0.0305 \times 10^{-3} \text{(mm/pulse)}$$

$$0.0305 \times 10^{-3} = 9836065.574 \quad \text{?}$$

(2) 1
$$(0.061 \times 10^{-3} [mm/pulse])$$
 $(0.1 \times 10^{-3} [mm/pulse])$. (2 - 10)

$$K = \frac{CMX}{CDV} = c \cdot \frac{P_{f0}}{P_B} = 0.1 \times 10^{-3} \times \frac{262144}{8} = \frac{2048}{625}$$

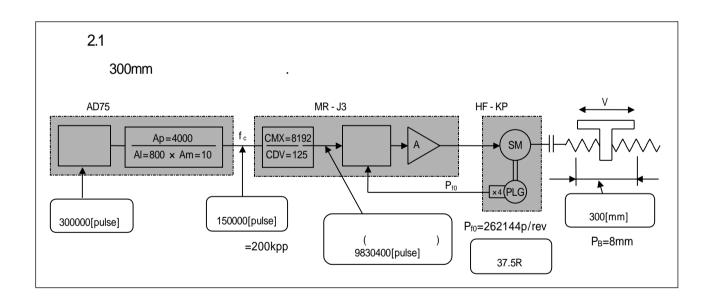
$$c = \frac{P_B}{P_{f0}} \times \frac{CMX}{CDV} = \frac{8}{262144} \times \frac{2048}{625} = 0.0001 \text{ (mm/pulse)}$$

(3)
$$(2-11)$$

$$f_{C1} = P_{f0} \times \frac{N}{60} = 262144 \times \frac{3000}{60} = 13107200 \text{ [pps]}$$

$$(2-6)$$

$$f_{C} = \frac{CDV}{CMX} \cdot f_{C1} = \frac{625}{2048} \times 13107200 = 4000000 = 4000 \text{ [kpps]}$$


$$. 7! \text{ AD75} 200 \text{ kpps}$$

$$. (AD75) 200 \text{ kpps} .)$$

(4)
$$(2-6)$$

$$f_{C} = \frac{CDV}{CMX} \cdot f_{C1} \quad \frac{CMX}{CDV} = \frac{f_{C1}}{f_{C}} = \frac{13107200}{200 \times 10^{-3}} = \frac{8192}{125}$$

$$c = \frac{P_{B}}{P_{f0}} \times \frac{CMX}{CDV} = \frac{8}{262144} \times \frac{8192}{125} = 0.002 \text{ (mm/pulse)}$$

2.5.2

.

가 .(4)

2.2

(1) MR - J3(3000r/min) kpps 가?

(2) MR - J3 ,

MR - J3 K .

(3) , MR - J3, AD75 kpps 7[†]?

(1) 200kpps .

(2) (2-11), (2-12) K

 $f_{C1} = P_{f0} \times \frac{3000}{60} = 262144 \times \frac{3000}{60} = 13107.2 \times 10^{3} pps \quad 2000 > K \quad \frac{f_{C1}}{f_{C}} = \frac{13107.2 \times 10^{3}}{200 \times 10^{3}} = \frac{65536}{1000}$

(3) MR - J3 AD75 200kpps .

2.3

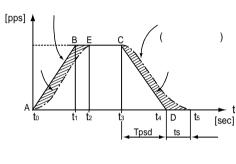
(1) MR - J3(3000r/min) kpps 7[†]?

(2) MR - J3 , MR - J3 K .

(3) , MR - J3, AD75 kpps 7¹?

(1) 1Mpps .

(2) (2 - 11), (2 - 12) K

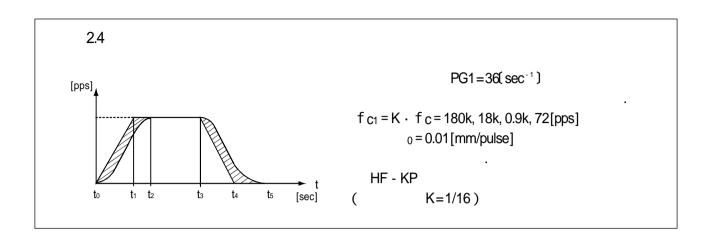

 $f_{C1} = P_{f0} \times \frac{3000}{60} = 262144 \times \frac{3000}{60} = 13107.2 \times 10^{3} pps \quad 2000 \times K \quad \frac{f_{C1}}{f_{C}} = \frac{13107.2 \times 10^{3}}{1 \times 10^{6}} = \frac{32768}{2500}$

(3) MR - J3 AD75 400kpps .

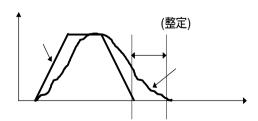
2. 6 (整定)

2.6.1

2.10


 $= \frac{f_{C1}}{PG1} = \frac{K \cdot f_{C}}{PG1} \text{ [pulse]}.....(2-13)$ PG1: [sec] K: CMX CDV 2.10

(1) t_0 t_2


가

- (2) t_2 t_3 (2 - 13)
- (3) t₃ t₄ (2 - 13) 가 . t4(
- (4) t₄ t₅ (整定) **t**5
- (5) ABCD)= AECF)

가 (ABEA)= CFDC) 가

$$\begin{array}{l} = \text{K} \cdot \text{f c/PG1[pulse]} &, \\ \text{K} \cdot \text{f c} = 180\text{kpps} & (1318\text{r/min}) \\ &= \frac{180000}{36} = 5000\text{(pulse]}, \\ \text{K} \cdot \text{f c} = 18\text{kpps} & (132\text{r/min}) \\ &= \frac{18000}{36} = 500\text{(pulse]}, \\ \text{K} \cdot \text{f c} = 0.9\text{kpps} & (6.6\text{r/min}) \\ &= \frac{900}{36} = 25\text{(pulse]}, \\ \text{K} \cdot \text{f c} = 72\text{pps} & (0.53\text{r/min}) \\ &= \frac{72}{36} = 2\text{(pulse]}, \\ &= 2\times0.01 = 0.02\text{(mm)} \end{array}$$

2. 7

2.7.1

2.3 MR-J3 No.PA09

1~9	(低應答)	. , 가 .
10~14	(低中應答)	, , & .
15~19	(中應答)	-
21~24	(中高應答)	·
35~32	(高應答)	,

MEMO	

3. 1 (分擔)

AC 가

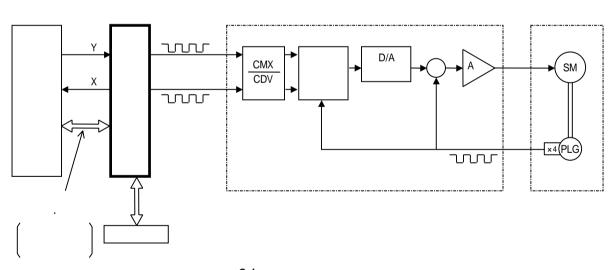
3.1.1

(1)

(2)

(3) (가)

(4)


3.1.2

(1) ,

(2)

(3)

3. 2

3.1

. (積算) , D/A

. PLG 가 (減算)

가 .

```
가
                                                                             가
                                               가
                                                                  MR - J2S - CP
                                      1
                                                )
                                                                  FX<sub>2N</sub> - 1PG
                                                                 FX<sub>2N</sub> - 10PG
                                                  FX
                                                                 FX<sub>2N</sub> - 10GM
                                                                 FX<sub>2N</sub> - 20GM
                                                                 FX<sub>3</sub>U - 20SSC - H
                                                                 QD75P /QD75D
QD75M /QD75MH
                                                                 QD70P4/QD70P8
                                                   A
Q
                                                                 A1SD75P - S3
                                                                 A1SD75M
                                                                 AD75P - S3
                                                                 AD75M
                                                                 Q172H/Q173H
                                                                 Q172/Q173
                               (多)
                                                                 A171SH/A172SH
                                                                 A173UH/A273UH
(1)
(2)
         1
                           가
                           ...... QD75P1, QD75D1, QD75M1, A1SD75P1 - S3, A1SD75M1,
                                FX<sub>2</sub>N - 10GM, MR - J2S CP
                      2
                           ...... QD75P2, QD75D2, QD75M2, A1SD75P2 - S3, A1SD75M2,
                                FX2N - 20GM, FX3U - 20SSC - H
                      3
                           ..... A1SD75P3 - S3, A1SD75M3
                      4
                           ...... QD75P4, QD75D4, QD75M4, QD70P4, A171SH, QD75MH
                      8
                           ..... QD70P8, Q172, A172SH, Q172H
                     32
                           ..... Q173, A173UH, A273UH, Q173H
(3)
                                              가
                .....2
                                       가1
                                                                                                            ),
                                              가
                .....2
                                                                                                           ),
```

3 - 2

(4) 2 , 3 (a) 3.2 2 FX2N - 20GM, FX3U - 20SSC - H, QD75P2, QD75D2, QD75M2, AD75P2 - S3, AD75M2 3 QD75P4, QD75D4, QD75M4, QD75MH4, Q172H, Q173H, Q172, Q173, A273UH (2 가)) 2 2 CW CCW 3.3

...... FX2N - 20GM, FX3U - 20SSC - H, QD75P2/P4, QD75D2/D4, QD75M2/M4, QD75MH2/4, A1SD75 - P2/P3 - S3, A1SD75M2/M3, Q172, Q173, Q172H, Q173H, A273UH

(5)

가 - .

, , , 가

SSCNET , , , ,

.

Q172H		HF - KP
~=		HF - MP
Q173H		HF-SP
	MR - J3 - B	HC-RP
QD75MH		HC-UP
		HC - LP
FX3U - 20SSC - H		HA - LP
Q172H		HC - KFS
	MD 100 D	HC-MFS
Q173H		HC-SFS
	MR - J2S - B	HC-RFS
	MR - J2M - B	HC-UFS
QD75M		HC-LFS
		HA - LFS

(6)

QD75D .

3.3.1

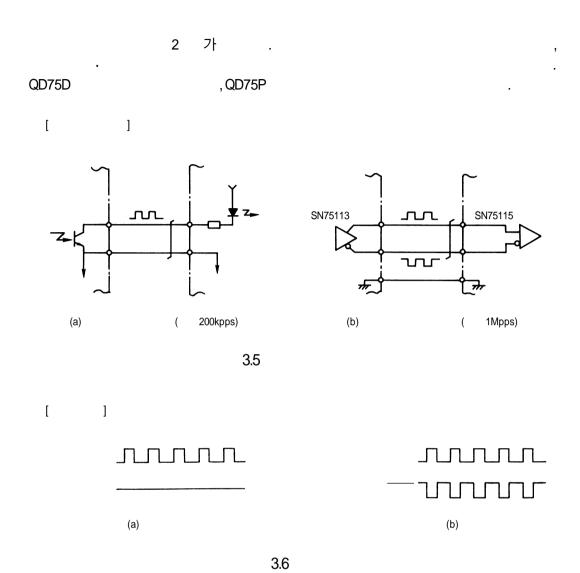
		mm	inch	degree	pulse				
	Pr.1	0	1	2	3	3			
	Pr.2 1	1~65535 pulse	20000						
	Pr.3 1	1~65535 ×10⁻¹ µm	1~65535 × 10⁻⁵ inch	1~65535 × 10⁻⁵ degree	1~65535 pulse	20000			
	Pr.4	1:1 10:10 1							
1	Pr.5	0:PULSE/SIGN 3:A /B (1							
	Pr.6	0:	가 1 :		가	0			
	Pr.7	0~2000000000 × 10 ⁻² mm/min	0~2000000000 × 10 ⁻³ inch/min	0~2000000000 × 10 ⁻³ degree/min	0~1000000 pulse/s	0			
	Pr.8	1~2000000000 × 10 ⁻² mm/min	1~2000000000 × 10 ⁻³ inch/min	1~2000000000 × 10 ⁻³ degree/min	1~1000000 pulse	200000			
2	Pr.9 가	4 0000000				1000			
	Pr.10	1~8388608 ms				1000			
	Pr.11	0~65535 ×10⁻¹ µm	0~65535 × 10⁻⁵ inch	0~65535 × 10 ⁻⁵ degree	0~65535 pulse	0			
	Pr.12	- 2147483648~	- 2147483648~	0~3599999	- 2147483648~ 2147483647	2147483647			
	Pr.13	2147483647 ×10 ⁻¹ µm	2147483647 × 10 ⁻⁵ inch	× 10 ⁻⁵ degree	2147483647 pulse	- 2147483648			
	Pr.14	0:	1	1		0			
	Pr.15	0:JOG , 1:JOG ,	,		가 가	0			
	Pr.16	1~2147483647 ×10 ⁻¹ µm	1~2147483647 ×10⁻⁵ inch	1~2147483647 ×10 ⁻⁵ degree	1~2147483647 pulse	100			
	Pr.17	1~500%				300			
	Pr.18 M ON	0:WITH		1 : AFTER		0			
	Pr.19	0:		1: (前)		0			
	Pr.20	0:		1:		0			
1	Pr.21	0: , 1: , 2: , 0							
		b0	b3	b6					
	Pr.22	b1	b4	b7, b9~b15		0			
		b2	b5	b8	0: (負, -) 1: (正, +) (
	[D.00]	b0	b2	b4	0)				
	Pr23	b1	b3	b5~b15		0			
	Pr.24	0:A /B 4 3:PULSE/SIGN	1:A /B 2 2:	A /B 1	ı	0			
	Pr.150 ·	0 : INC . 1 : ABS				0			

		mm	inch	degree	pulse				
	Pr.25 가 1					1000			
	Pr.26 가 2								
	Pr.27 가 3	1~8388608 ms				1000			
	Pr.28 1	1~03000001115				1000			
	Pr.29 2					1000			
	Pr.30 3					1000			
	Pr.31 JOG	1~2000000000 × 10 ⁻² mm/min	1~2000000000 × 10 ⁻³ inch/min	1~2000000000 ×10 ⁻³ degree/min	1~1000000 pulse	20000			
	Pr.32 JOG 가	0~3	0.2						
	Pr.33 JOG	0~3	- 0~3						
2	Pr.34 가	0: 가		1:S 가		0			
	Pr.35 S	1~100%				100			
	Pr.36	1~8388608 ms				1000			
	Pr.37 1					0			
	Pr.38 2	0: 1:				0			
	Pr.39 3					0			
	Pr.40	0~65535 ms				300			
	Pr.41	0~100000 × 10 ⁻¹ μm	0~100000 × 10 ⁻⁵ inch	0~100000 × 10 ⁻⁵ degree	0~100000 pulse	100			
	Pr.42	0: 2: · / ·		1: 3:		0			

3.3.2

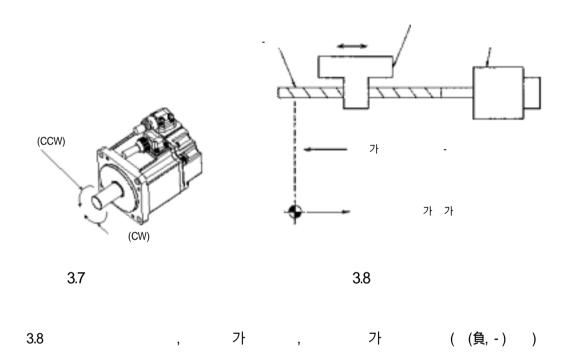
	mm	inch	degree	pulse	
Pr.43	0: 1: (2: (3: (4: (5: (-))		0
[Pr.44]	0: (+) (1: (-) (가))			0
Pr.45	- 2147483648~ 2147483647 × 10 ⁻¹ µm	- 2147483648~ 2147483647 × 10 ⁻⁵ inch	0~35999999 ×10 ⁻⁵ degree	- 2147483648~ 2147483647 pulse	0
Pr.46	1~2000000000 × 10 ⁻² mm/min	1~2000000000 ×10 ⁻³ inch/min	1~2000000000 × 10 ⁻³ degree/min	1~1000000 pulse/s	1
Pr.47	0:	X TO IIIGI/IIIIII	x 10 degree/min	puise/s	1
Pr.48	1:				0
Pr.49	0~65535 ms				0
Pr.50 ON	0~2147483647 ×10 ⁻¹ µm	0~2147483647 ×10⁻⁵ inch	0~2147483647 ×10 ⁻⁵ degree	0~2147483647 pulse	0
Pr.51 가	0.0				0
Pr.52	0~3				0
Pr.53	- 2147483648~ 2147483647 × 10 ⁻¹ µm	- 2147483648~ 2147483647 × 10 ^{.5} inch	0~35999999 ×10 ⁻⁵ degree	- 2147483648~ 2147483647 pulse	0
Pr.54	1~300%				300
Pr.55	1~65535 ms				11
Pr.56	0: 1:				0
Pr.57	0~65535 ms				0

3.3.3


	mm	inch	degree	pulse	
	(00):	()			
	(01):	(No.)	
	(11):	(No.)	
	4 . 450 . 4	,	4 PO)	0411	
	1: ABS 1		ABS)	01H	
	2: INC 1		NC)	02H	
	3: 1	1	\	03H	
	4: 1	1 ()	04H	
	5: 1	1 ()	05H	
	6:	•	()	06H	
	7: .	•	()	07H	
	8: .	•	()	08H	
	9: .		()	09H	
	A: ABS 2 B: INC 2	2	(ABS)	0AH 0BH	
	C: 2	2	(INC)	0CH	
	D: ABS	2	(ADC)	0DH	
	E : INC		(ABS)	0DH 0EH	
	F: ABS		(INC) (ABS, CW)	0EH 0FH	
	G: ABS		(ABS, CCW)	10H	
	H : INC		(INC, CW)	11H	
	I : INC		(INC, CCW)	12H	-
	J: 2	2 (13H	
	K: 2	2 ()	14H	
	L: ABS 3	3	(ABS)	15H	
	M: INC 3	3	(INC)	16H	
	N: 3		(IIVO)	17H	
	0: 3	3 (1	18H	
	P: 3	3 ()	19H	
	Q: ABS 4	4	(ABS)	1AH	
	R:INC 4	4	(INC)	1BH	
	S: 4	4	(IIVO)	1CH	
	T: 4	4 ()	1DH	
	U: 4	4 ()	1EH	
	V : NOP	NOP	,	80H	
	W:	1.0.		81H	
	X : JUMP	JUMP		82H	
	Y: LOOP	LOOP~LEND	(先頭)	83H	
	Z : LEND	LOOP~LEND	(元成) (最後尾)	84H	
		2001 22110	(4x (x/T)	0 11 1	
가 No.	0~3(2 2	가 0~3)	0

		mm	inch	degree	pulse		
		0~3(2 0: 1 1: 2 2: 3 3: 4	r () () ()	J())	0	
	(ABS)	- 214748364.8~ 214748364.7 µm	- 21474.83648~ 21474.83647inch	0~359.99999degree	- 2147483648~ 2147483647pulse	0	
/	(INC)	- 214748364.8~ 214748364.7 µm	- 21474.83648~ 21474.83647inch	- 21474.83648~ 21474.83647degree	- 2147483648~ 2147483647pulse	0	
	٠, ٠	0~214748364.7 µm	0~21474.83647inch	0~21474.83647 degree)	0~2147483647pulse	0	
()	- 214748364.8~ 214748364.7 µm	- 21474.83648~ 21474.83647inch	-	- 2147483648~ 2147483647pulse	0	
		0.01~20000000.00 mm/min	0.001~2000000.000 inch/min	0.001~2000000.000 degree/min	1~1000000 pulse/s	0	
	JUMP	0~65535ms()	ナON			
	JUMP	1~600()	7 014	•	0	
	JUMP , LOOP	0~65535(M)					
М	JUMP	0~10(No. 0 : 1~10:				0	
	LOOP	0~65535()					

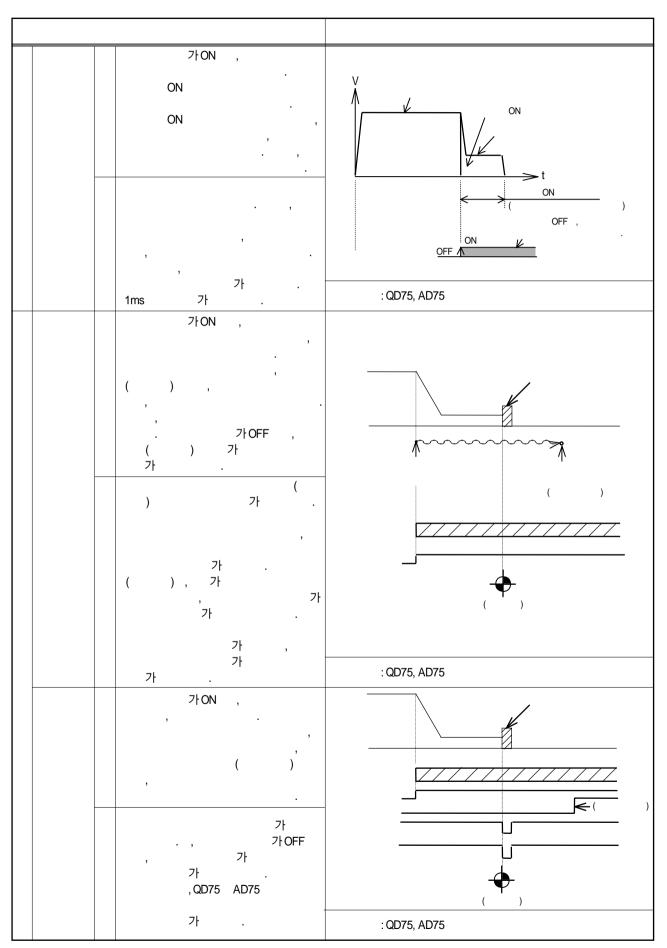
No.				가 [ms]	[ms]		/ [µm]		[mm/min]	[ms]	М
1	0:	1 : ABS	1	0:100	0:100	-	50000.0	0.0	2000.00	0	0
2	0:	1 : ABS	1	0:100	0:100	-	75000.0	0.0	2000.00	0	0
3	0:	1 : ABS	1	0:100	0:100	-	100000.0	0.0	2000.00	0	0
4	0:	1 : ABS	1	0:100	0:100	-	150000.0	0.0	2000.00	0	0
5	0:	1 : ABS	1	0:100	0:100	-	200000.0	0.0	2000.00	0	0
6	0:	1 : ABS	1	0:100	0:100	-	25000.0	0.0	2000.00	0	0
7	0:	0:		0:100	0:100	-	0.0	0.0	0.00	0	0
8	0:	0:		0:100	0:100	-	0.0	0.0	0.00	0	0
9	0:	0:		0:100	0:100	-	0.0	0.0	0.00	0	0
10	0:	0:		0:100	0:100	-	0.0	0.0	0.00	0	0

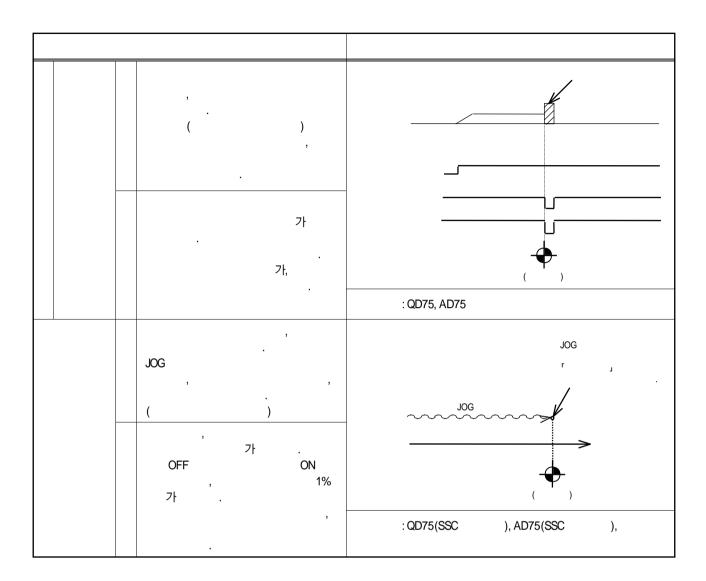

3. 4 (CPU) CPU 가 (SSC Q172H, Q173H, Q172, Q173, A171SH, A172SH, A173UH, A273UH, AD75M, A1SD75M, QD75MH, QD75M, FX3U - 20SSC - H] MR-J3- B, MR-J2S- B, MR-J2M- B FX2N - 1PG, FX2N - 10PG, FX2N - 10GM, FX2N -) 20GM, QD75P, QD75D, QD70, AD75P, A1SD75P] MR - J3 - A, MR - J2S - A MR-J2S- CP) ĺ) 2 MJUUL 1 W (a) · (c) 2 (b)

3.4

3. 5

3.5.1


3.5.2


(1)

(1)	OFF ON , , , ON OFF , , , , , , , , , , , , , , , , , ,
(1)	, () . 7}
(2)	
 (2)	

(2) , 4 가 .

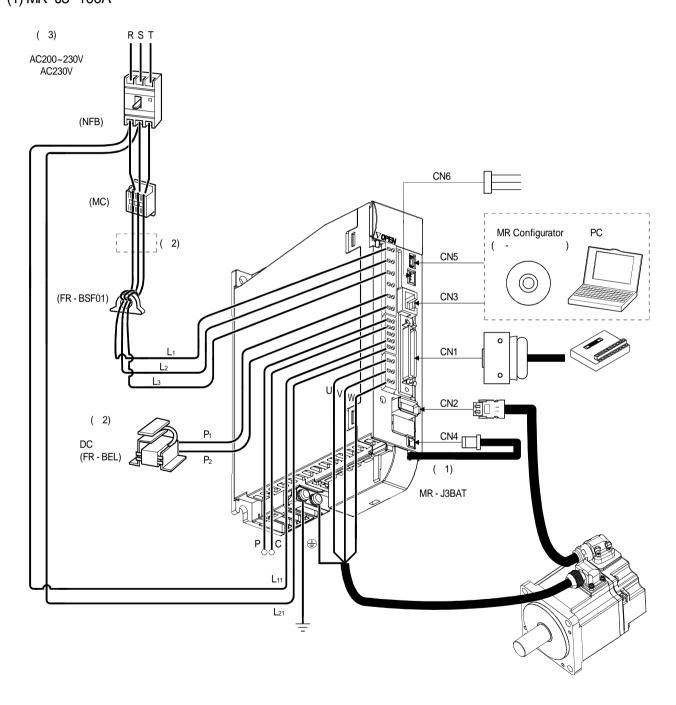
OFF ON , , ON OFF , , , ,	
가 , 가 , 가가	: QD75, AD75,
가ON ,	(=4) .
, , 가 가 , ,	
,	
,	U
, 가 .	: FX
7 ON ON	ON ON OFF , ON ,
가 .	: QD75, AD75,

MEMO	

4. MELSERVO-J3

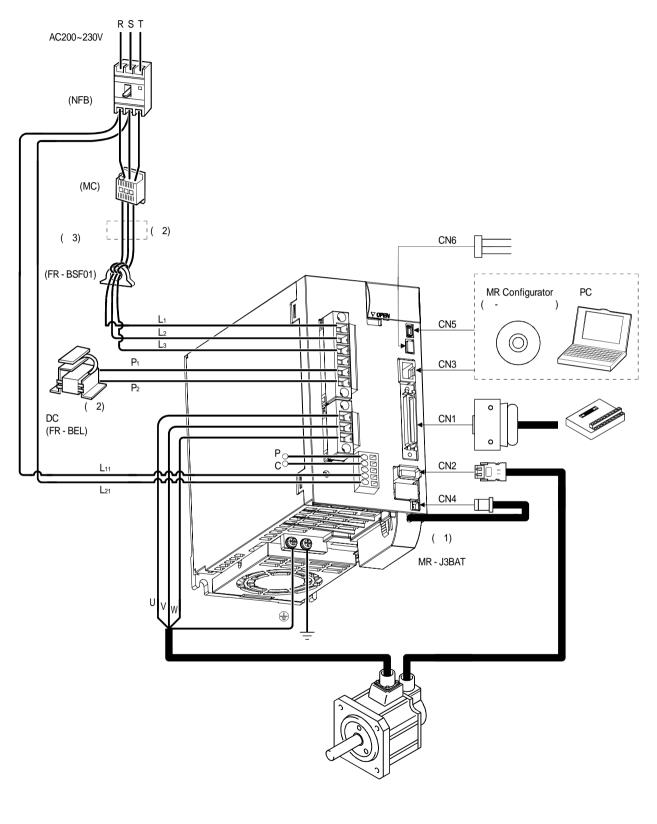
4. 1

MR - J3


	()		()
	P		Р
	S	S 가	S·T
	Т		P·S·T
/	P/S		P·S·T
/	S/T		S
/	T/P		Р
	P·S·T		P·S·T
	Р		P·S
	P·S		Т
	Р		P·S·T
	P·S·T		P·S·T
	P·S·T	(D0)	P·S·T
	Р	VC	S·T
	Р		P·S·T
	Р		P·S·T
	Р	MR Configurator(-)	P·S·T
	Р		P·S·T
	P·S		P·S·T

) P: ,S: ,T: P/S: / ,S/T: / ,T/P: /

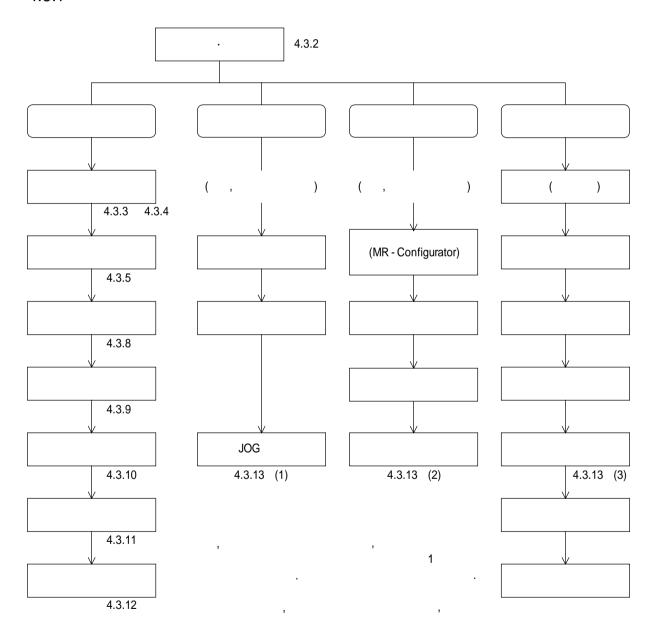
4. MELSERVO-J3


4. 2

(1) MR-J3-100A

^{3.} AC230V MR - J3 - 70A .

(2) MR-J3-200A


4. MELSERVO-J3

4. 3

, 「 」 , 4.3.1

4.3.2

4.3.1

4.3.2

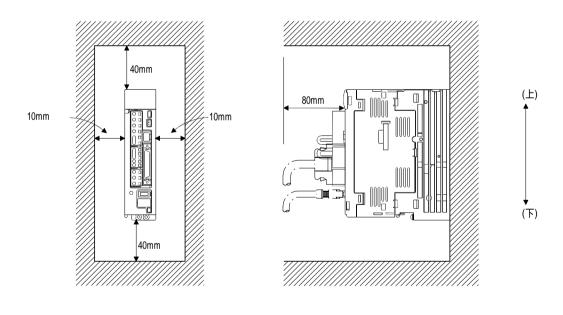
·

.

가

4. MELSERVO-J3

4.3.2

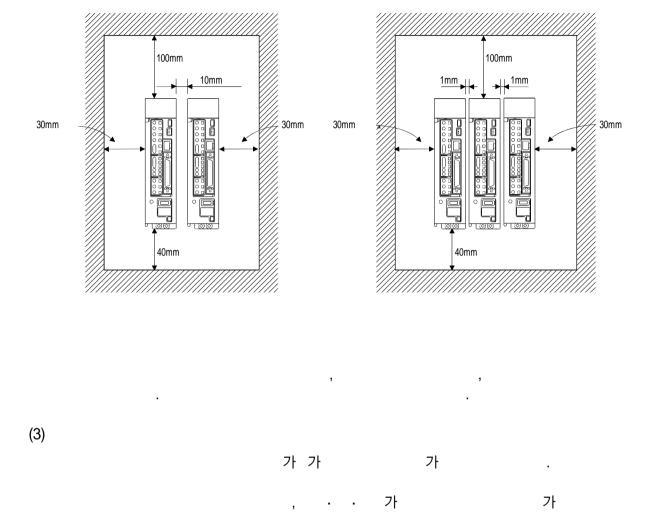

[]

(1)

0 ~+55 ()
90%RH (가)
-20 ~+65 ()
90%RH (가)
(),
가 ・
1000m
5.9m/s²(0.6 G)

(2)

1

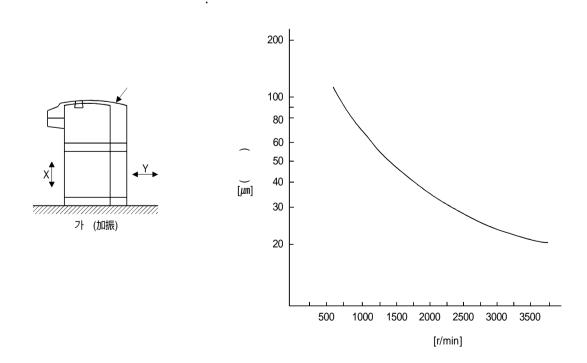


2

-가 .

, 1mm . , 0~45 , 75% .

가 가



(가 , 가

가

[]

T.		
	0 ~+40 ()	
	80%RH (가)	
	-15 ~+70 (
	90%RH (가)	
	(),	
가	· 가· ·	가 .
	1000m	
HC - KP	HC - KFS	
HC - MP	HC - MFS	X, Y: 49m/s ² (5G)
HC - AQ	HC - UFS13~73	
	HC - SFS81	
	HC - SFS52~152	
HF - SP52~152	HC-SFS53~153	X, Y: 24.5m/s ² (2.5G)
	HC-RFS	
	HC - UFS72 · 152	
	HC - SFS121 · 201	
HF - SP202 · 352	HC - SFS202 · 352	X: 24.5m/s²(2.5G)
11F - 3F202 · 332	HC-SFS203 · 353	Y: 49m/s ² (5G)
	HC - UFS202	
HF - SP301	HC - SFS301	X: 24.5m/s²(2.5G)
111 - 31 301 110 - 31 3301		Y: 29.4m/s²(3G)
HA - LP30K24~55K24	HA - LFS30K24~55K24	X, Y: 9.8m/s ² (2G)

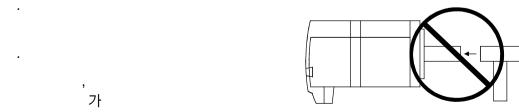
(2)

HF-KP HF-SP		
HC-KFS HC-MFS		
HC-SFS HC-RFS	71	,
HC-UFS	가	·
HC - AQ		
HA - LH		
HA - LF		, ,

•

(3)

(4) (


,

, ,

.

.

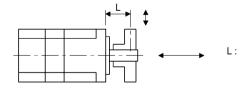
. , 가 .

•

4. MELSERVO-J3

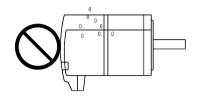
(5)

(flexible) , .

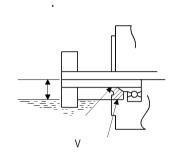

· , 가 .

() , 가 ,

.

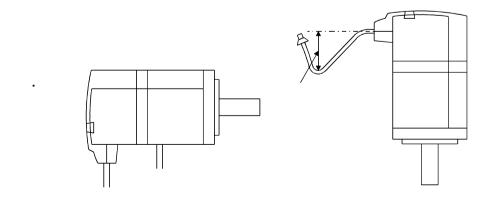

		(1)				
		L [mm]	[N]	(2) [kgf]	[N]	(2) [kgf]
HE KD	053 · 13	25	88	9.0	59	6.0
HF - KP	23 · 43	30	245	25.0	98	10.0
HC - MFS	73	40	392	40.0	147	15.0
	81	55	980	100.0	490	50.0
	121~301	79	2058	210.0	980	100.0
(3) HF - SP	52~152	55	980	100.0	490	50.0
HC-SFS	202~702	79	2058	210.0	980	100.0
	53~153	55	980	100.0	490	50.0
	203 · 353	79	2058	210.0	980	100.0
LIC DEC	103~203	45	686	70.0	196	20.0
HC-RFS	353 · 503	63	980	100.0	392	40.0
	72 · 152	55	637	65.0	490	50.0
	202	65	882	90.0	784	80.0
110 1150	352 · 502	65	1176	120.0	784	80.0
HC-UFS	13	25	88	9.0	59	6.0
	23 · 43	30	245	25.0	98	10.0
	73	40	392	40.0	147	15.0
HC - KFS	23 · 43	30	245	25.0	98	10.0
	0135	16	34	3.5	14	1.5
HC - AQ	0235	16	44.0	4.5	14	1.5
	0335	16	49	5.0	14	1.5
114 150	30K24 · 37K24	140	3234	330	1470	150
HA - LFS	45K24 · 55K24	140	1900	500	1960	200

) 1.



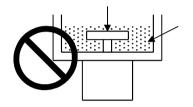
(6)

HF - KP	IP65
HF-SP	IP67
HC-AQ·HC-KFS·HC-MFS	IP55



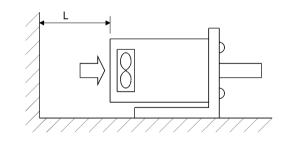
,




		[mm]
	81	20
	121~301	25
HC-SFS	52~152	20
HC-3F3	202~702	25
	53~153	20
	203 · 353	25
HC-RFS	103~503	20

		[mm]
HC - UFS	72 · 152	20
	202~502	25
	13	12
	23 · 43	14
	73	20
HA - LFS	30K24 · 37K24	45
	45K24 · 55K24	48

.()

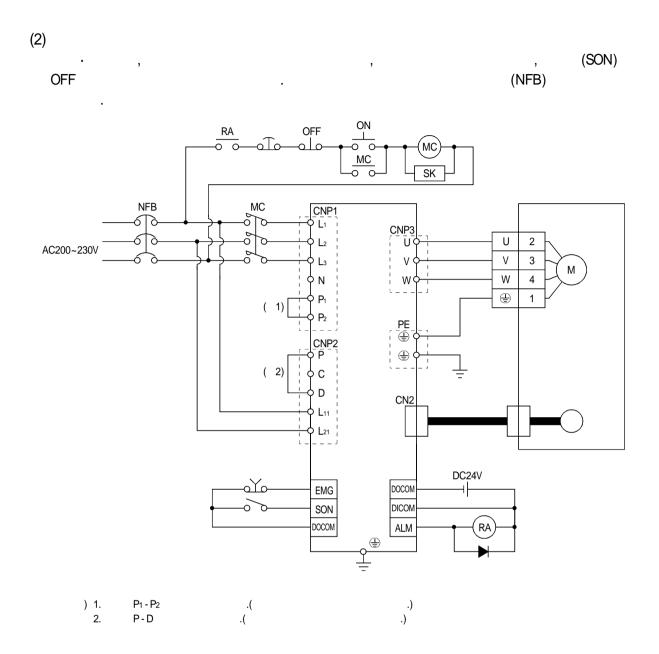


(7) HA - LFS

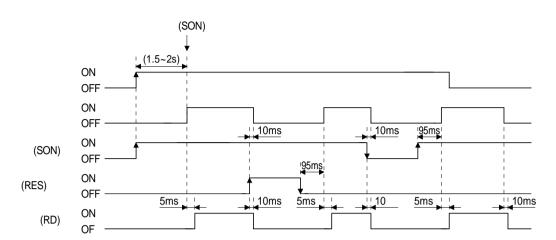
.

	L [mm]
HA - LP HA - LFS	150

7t	(8)		,	가	
7} 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 1×10° 5×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10° 1×10°		가	,		,
7+ ,7+ 1×10° 5×10° 5×10° 1×10° 5×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10° 1×10° 5×10°			,	, 7	ŀ
5×10^{7} 1×10^{7} 5×10^{6} 1×10^{6} 5×10^{5} 5×10^{4} 1×10^{4} 5×10^{3} 1×10^{4}		가	,가	·	
1×10^3		5×10 ⁷ 1×10 ⁷ 5×10 ⁶ 1×10 ⁶ 5×10 ⁵ [] 1×10 ⁵ 5×10 ⁴		b:	


[mm]

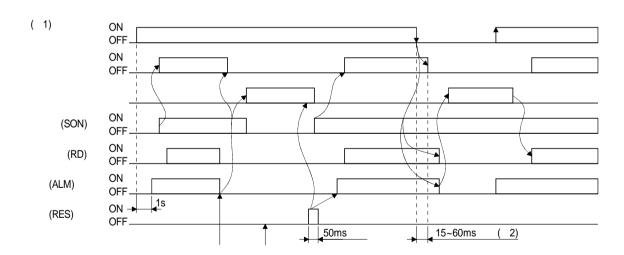
```
4.3.3
(1)


3.1 , ( 200V: L1 · L2 · L3, 230V: L1 · L2)
OFF

L11 · L21

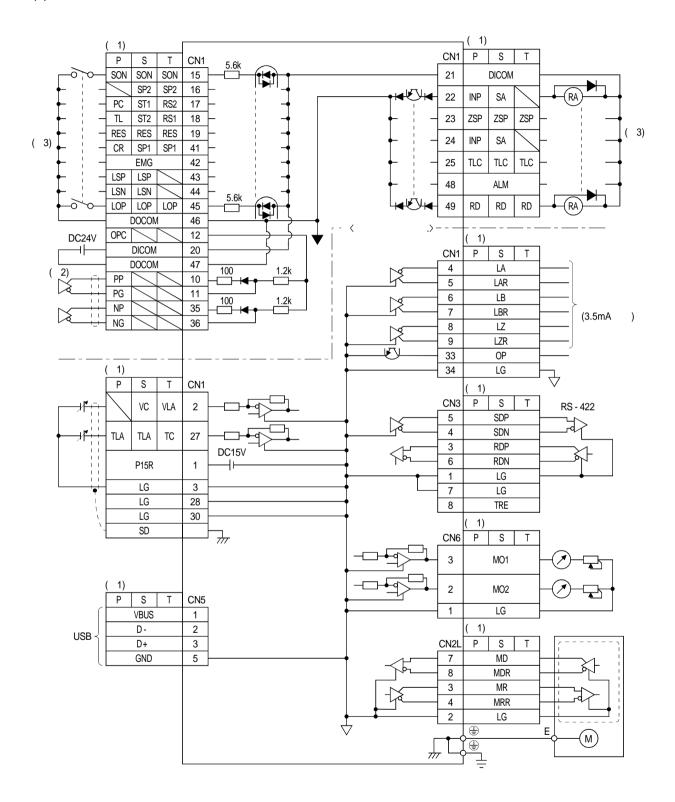
1~2s (SON) 7!
, (SON) ON , 1~2s 7! ON
, 20ms (RD)7! ON 7! 7!
. (RES) ON , 7!
```


(3)

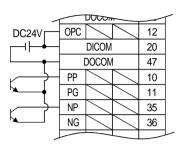


(4)

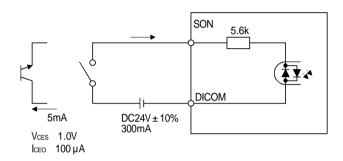
(4) , , 가 .

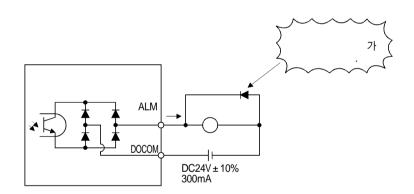

OFF ON, "SET" , (RES)

OFF ON , .



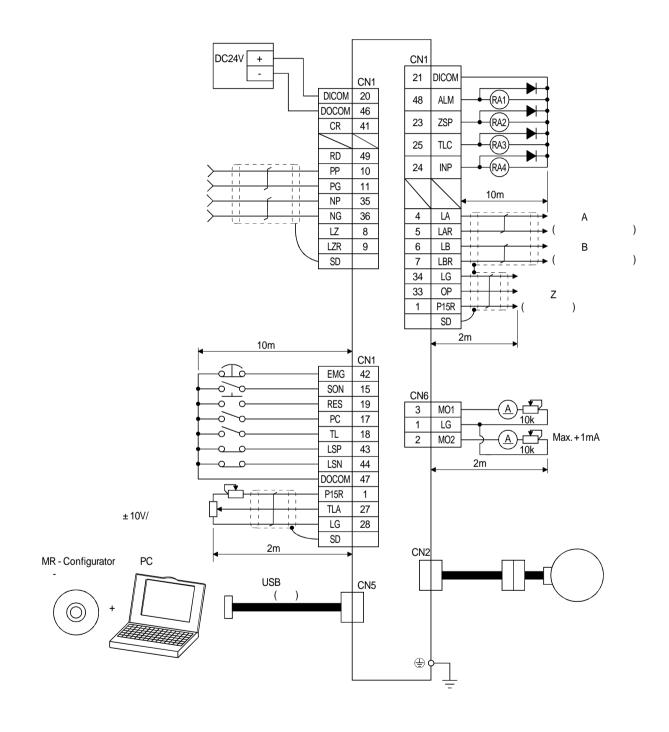
) 1. 2.


(5)



) 1.P: S: T: 2. , , . .

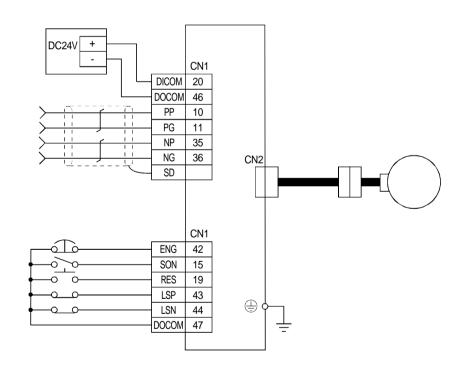
3. . . .



4.3.4

(1)

(全)


· ·

2) · (OFF)가

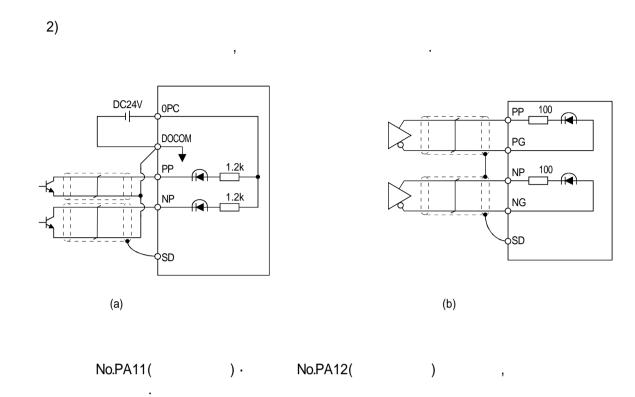
가 , DOCOM

3) · ,

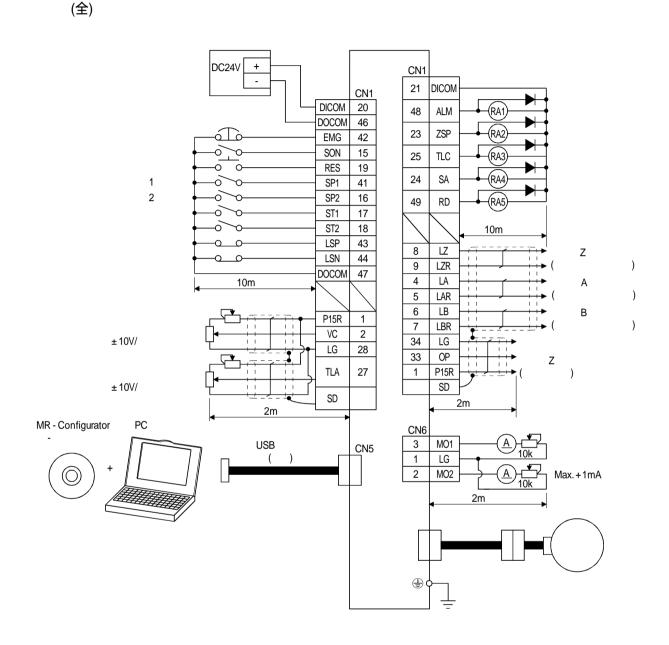
5) , (EMG) (B)
DOCOM .

Q75

QD75


QD75 1) 2) 3) ... QD75 4) 5) 6) 7) (ON) QD75 (B) DOCOM 8) (EMG) DC24V QD75D CN1 DICOM 20 CLEARCOM 14 DOCOM 46 CLEAR 13 CR 41 RDYCOM 12 REDY 11 RD 49 PULSE F+ 15 PP 10 PULSE F-16 PG 11 PULSE R+ 17 NP 35 PULSE R+ 18 NG 36 PG05 9 LZ 8 PGO COM 10 LZR 9 QD75D ← LG 3 10m CN1 CN2 EMG 42 SON 15 RES 19 PC 17 TL 18 LSP 43 LSN 44 DOCOM

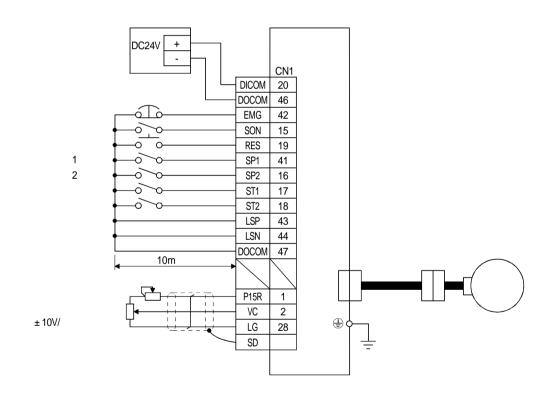
FX2N - 20GM/10GM/10PG/1PG, QD75P/QD75D, QD70P, AD75P/A1SD75P


MR - J3 , 가

1)

No.PA13					
0010h			PP TITE	- FIFIFI	QD75P, QD75D, QD70P, FX2N - 20GM/10GM/10PG/1PG () A1SD75P - S3, AD75P - S3
0011h	(負・)	+	PP J.	T H	QD75P, QD75D, QD70P, A1SD75P - S3, AD75P - S3, FX ₂ N - 20GM/10GM/10PG/1PG
0012h		A B	PP TT		QD75P, QD75D, A1SD75P - S3, AD75P - S3
0000h					QD75P, QD75D, QD70P A1SD75P - S3, AD75P - S3 ()
0001h	(証 +)	+	PP TITIT		QD75P, QD75D, QD70P, A1SD75P - S3, AD75P - S3
0002h		A B	PP J J J		QD75P, QD75D, A1SD75P - S3, AD75P - S3
()	_	<u> </u>			

(2)


,

2) 1 · 2

3)

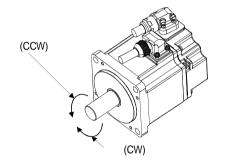
, 기 가

5) , (EMG) (B) SG

(1) $1(SP1) \cdot 2(SP2)$

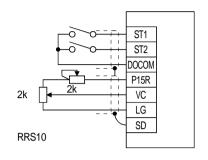
1(SP1) · 2(SP2) 1~3 (VC)

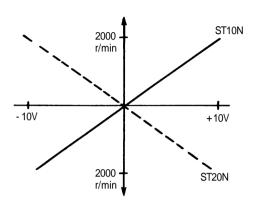
·)


()		
SP2	SP1	
0	0	(VC)
0	1	1(No.PC05)
1	0	2(No.PC06)
1	1	3(No.PC07)

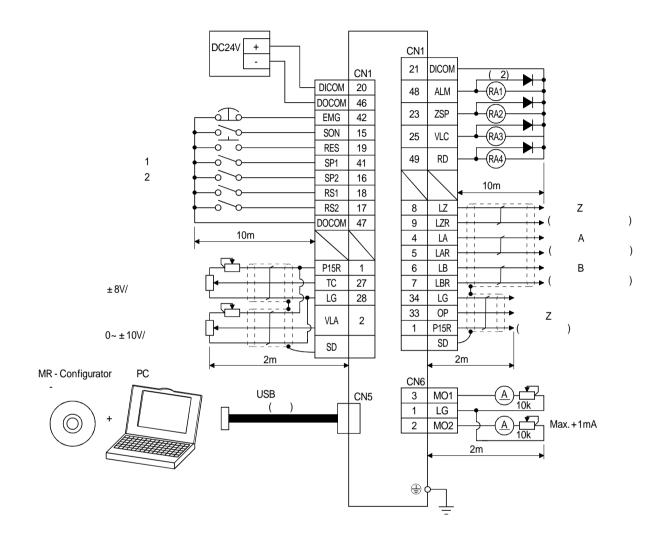
) 0:OFF 1:ON

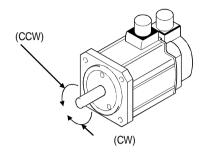
(2) $(ST1) \cdot (ST2)$ $\cdot (ST1) \cdot (ST2)$. ST1, ST2 OFF ON \cdot , $7 \mid$.


,

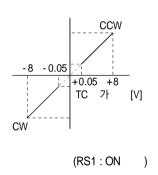

()		(VC)					
ST2	ST1	+		()V	1	
1	1	()	()	()
0	1	CC	CW			C	W
1	0	C	W	()	CC	CW
1	1	()	()	()

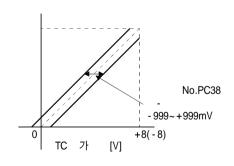
(3)


.

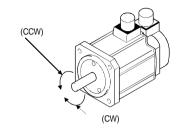


(4) No.PA11() · No.PA12() ,


(3)

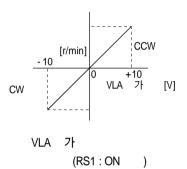

4.1

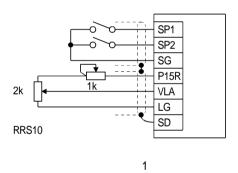
RS1-SG	DC2 CC			
K31-3G	K32-3G	+	0V	-
		CCW(CW(
		•		
		CW(CCW(


RS1 RS2 SG TC LG SD

No.PA11() · No.PA12() ,

(TLA) .


a. No.PC05~PC11(1~7) (VLA) 가 (VLA) 가 (RS1) · (RS2)


4.2 RS1 - RS2

4.2

RS1-SG	RS2-SG	(VLA)			(VLA)		
		+	-	1~3			
		CCW	CW	CCW			
		CW	CCW	CW			

b.


```
가
                        , AC
         가
, AC
       ( ) 300%
          가
          가
                     가
                                  가
                                         )
```

C.	1(SP1) ·	2(SP2) ·	3(SP3)		1(SP1) ·	
	2(SP2) ·	3(SP3)		1~7		
	(VLA)		4.3			
	MR - J3A	:	, 3(SP3))		
		3(SP3)	No.PD03~F	PD12		CN1
	,	4~7				
,	,	3(SP3)				,
	4~7		1~7		,	

4.3 SP1 · SP2 · SP3

()	
SP3	SP2	SP1
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

) 0:SG OFF() 1:SG ON()

d. (VLC) 가 1~7, , VLC - SG .

4.3.5

(1) , 4.3.2. 4.3.3 , . .

(a) 4.3.2 . ,

,

(b) 4.3.3 . , . . ,

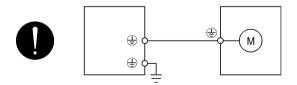
, ,

(2)

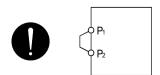
(a)

(L1 · L2 · L3 · L11 · L21)

 $(U \cdot V \cdot W)$


 $(U \cdot V \cdot W)$

U V W M


• (U・V・W) ・ 가 .

O U V W U V W

• PE .

• P1 - P2

,P-C DC P1 - P2 () P1 - P2 (b) 가 DO CN1 ON/OFF 가가 가 CN1 DC24V CN1 SD DOCOM CN1 DOCOM SD (3) (a) 가 가 가 (b) 가 (4) 가 가 가

(5)		
SON() OFF		
ON .		
MC ON	ON ,	
ON .		
4.3.8		
4.3.9		
SON ON .	0」 ON .	
4.3.10		

4.3.14

4.3.6 MR - J3 가 (5 7 (1) MODE Low/High **DOWN** SET () (D0) -d-pF · VC ID ID ID ID HL No. MODE () MR Configurator

(2)

5 7 LED

• • • DOWN

5 7 SET

4.4

			4.4	
	С	pulse	±999999 , , 5 가 . "SET" "0"	- 99999 ~ 99999
	r	r/min	0.1r/min	- 7200 ~ 7200
	E	pulse	2, 3, 4, 5 5	- 99999 ~ 99999
	Р	pulse	(CMX/CDV) , ±99999 , 5 , 5 가 . "SET" 0 , 2,3,4,5	- 99999 ~ 99999
	n	kpps	(CMX/CDV) .	- 1500 ~ 1500
	F	V	(1) (VLA) . (2) (VC) .	-10.00 ~ +10.00
		.,,	(1) . (TLA) .	0 ~ +10.00
	U	V	(2) (TC)	-8.00 ~ +8.00
	L	%	%	0 ~ 100
	J	%	100% , 15 .	0 ~ 300
	b	%	100% , 15	0 ~ 400
	Т	%	100%	0 ~ 400
1 (1pulse)	Cy1	pulse	1 . 0 . 5 . フナ . CCW フナ .	0 ~ 99999
1 (100pulse)	Cy2	100 pulse	1 100 "0" CCW 7t	0 ~ 2621
ABS	LS	rev		- 32768 ~ 32767
	dC			0.0 ~ 300.0
	Pn	V	(P-N) .	0 ~ 450

(3)

4.5

			ON 가
		6. 7 4.3.9	ON/OFF . 가 , 가 .
(DO)			ON/OFF 6.8
	JOG		JOG . 6.9.2 .
			1 , MR Configurator (-)MRZJW3 - SETUP211E가
			가 6.9.4 .
			MR Configurator(-) MRZJW3 - SETUP211E가 . 12.8 .
			가 (MR - J3ACHECK) MR Configurator(-) MRZJW3 - SETUP211E가 . 12.8 .

Low	·
High	
VC	(VC) (VLA) 0V フト No.PC37 "SET " 1 "UP **DOWN " 1 1
	"SET" VC VLA ±0.4V
ID	" SET " ID MELSERVO
ID	" SET " ID . MELSERVO
ID	" SET " ID . MELSERVO
	·

(4)

고 가 No. 4.6

	(AL.33) .
AD 50	1 (前) 1(AL.50) .
EE ! A	2 (前) (AL.33) .
82 10	3 (前) (AL.10) .
HH HH	4 (前) (AL.31)가 .
A4	5 (前) .
A5	6 (前) .
<u> </u>	(AL.37)
	No.PA12 .

가 , 4
OFF ON, ⑤ SET ,
No.PC18

● , ● DOWN

(5) () LED MODE Low/High UP DOWN SET (5 - 1) (SON) OFF (NFB) C() (: C () : r (: U (가 No.PC36 (5 - 2) SON ON (SON) ON 가 가 . (가 ● MODE 1 SON ON 가 .

(5-3) r	ر . UP	DOWN	4.3.6	. (1)		,		_
					No.F	PC18	•	
(5 - 4)		MODE	,			. UP DOWN		
(5-5)	,	MODE 가	,		1	A L 5 2	()	
A L	. -	-	가	1	〈UP〉 (前) 	A 0 3 3)	
	6 (前) ·	OFF	가	2	〈UP〉 (前)	A 1 ()	
(5 - 6)		,				A L 3 1	()	
					()	4 4		
						J 1 2 0	7	

4.3.7

, . , / /

MR - J3

(1) (,4.3.8)

MR - J3 - A .

(No.PA)	,	
(No.PB)	,	·
(No.PC)	•	,
(No.PD)		

, (No.PA) , 가 .

* 가 , OFF ,

(a)

No.						
PA01	*STY		0000h			
PA02	*REG		0000h			
PA03	*ABS		0000h			
PA04	*AOP1	A - 1	0000h			
PA05	*FBP	1	0			
PA06	CMX	()	1			
PA07	CDV	()	1			
PA08	ATU		0001h			
PA09	RSP		12			
PA10	INP		100	pulse		
PA11	TLP		100.0	%		
PA12	TLN		100.0	%		
PA13	*PLSS		0000h			
PA14	*POL		0			
PA15	*ENR		4000	pulse/rev		
PA16			0			
PA17			0000h			
PA18			0000h			
PA19	*BLK		000Bh			

(b) ·

No.							
PB01	FILT	()	0000h				
PB02	VRFT	()	0000h				
PB03	PST	가 ()	0	ms			
PB04	FFC		0	%			
PB05			500				
PB06	GD2		7.0		,		
PB07	PG1		24	rad/s			
PB08	PG2		37	rad/s			
PB09	VG2		823	rad/s			
PB10	VIC		33.7	ms			
PB11	VDC		980				
PB12			0				
PB13	NH1	1	4500	Hz			
PB14	NHQ1	1	0000h				
PB15	NH2	2	4500	Hz			
PB16	NHQ2	2	0000h				
PB17			0000				
PB18	LPF		3141	rad/s			
PB19	VRF1		100.0	Hz			
PB20	VRF2		100.0	Hz			
PB21			0.0				
PB22			0.0				
PB23	VFBF		0000h				
PB24	*MVS		0000h				
PB25	*BOP1	B-1	0000h				
PB26	*CDP		0000h				
PB27	CDL		10				
PB28	CDT		1	ms			
PB29	GD2B		7.0				
PB30	PG2B		37	rad/s			
PB31	VG2B		823	rad/s			
PB32	VICB		33.7	ms			
PB33	VRF1B		100.0	Hz			
PB34	VRF2B		100.0	Hz			
PB35	\		0.0	\	\	\	
PB36	$ \cdot $		0.0]\	\	\	\
PB37	\		100		\		\
PB38	\		0] \	\	\	\
PB39			0] \			\
PB40	\		0] \	\	\	\
PB41	\		1125	\	\	\	\

No.					
140.					
PB42		1125	\setminus		\setminus
PB43		0004h			$ \ $
PB44		0.0			\
PB45] \	0000h			

(c)

	,					
No.						
PC01	STA	가	0	ms		
PC02	STB		0	ms		
PC03	STC	S 가	0	ms		
PC04	TQC		0	ms		
PC05	SC1	1	100	r/min		
1 005	501	1	100	1/1111111		
PC06	SC2	2	500	r/min		
1 000	002	2		.,		
PC07	SC3	3	1000	r/min		
1 007	000	3	1000	1/1111111		
PC08	SC4	4	200	r/min		
FC06	304	4	200	1/1111111		
PC09	SC5	5	300	r/min		
1 005	000	5	500	1/1111111		
PC10	SC6	6	500	r/min		
1010	000	6	300	1/1111111		
PC11	SC7	7	800	r/min		
1011	507	7	000	1/1111111		
PC12	VCM		0	r/min		
PC13	TLC		100.0	%		
PC14	MOD1	1	0000h			
PC15	MOD2	2	0001h			
PC16	MBR		100	ms		
PC17	ZSP		50	r/min		
PC18	*BPS		0000h			
PC19	*ENRS		0000h			
PC20	*SNO		0			
PC21	*SOP		0000h			
PC22	*COP1	C-1	0000h			
PC23	*COP2	C-2	0000h			
PC24	*COP3	C-3	0000h			
PC25			0000h			
PC26	*COP5	C-5	0000h			
PC27			0000h			
PC28			0000h			$ \ $
PC29			0000h		$\bigsqcup \setminus$	$\bigsqcup \setminus$
PC30	STA2	가 2	0	ms		
PC31	STB2	2	0	ms		
DC22	CMX2	2	1			
PC32	OIVIX	3		\sim	_ \	\sim

No.							
PC34	CMX4	4	1				
PC35	TL2	2	100.0	%			
PC36	*DMD		0000h				
PC37	VC0		0	mV			
PC38	TP0		0	mV			
PC39	MO1	1	0	mV			
PC40	MO2	2	0	mV			
PC41			0		\		\
PC42]\		0]\	\	\	\
PC43			0] \	\	\	\
PC44			0] \	\	\	\
PC45			0] \	\	\	\
PC46	\		0	\	\	\	\
PC47	\		0		\	\	\
PC48	\		0] \	\		
PC49	\		0] \	\	\	
PC50	\		0] \	\	\	\

(d)

No.							
PD01	*DIA1	ON 1	0000h				
PD02			0000h				
PD03	*DI 1	1(CN1 - 15)	00020202h				
PD04	*DI2	2(CN1 - 16)	00212100h				
PD05	*DI3	3(CN1 - 17)	00070704h				
PD06	*DI4	4(CN1 - 18)	00080805h				
PD07	*DI5	5(CN1 - 19)	00030303h				
PD08	*DI6	6(CN1 - 41)	00202006h				
PD09			00000000h				
PD10	*DI8	8(CN1 - 43)	00000A0Ah				
PD11	*DI9	9(CN1 - 44)	00000B0Bh				
PD12	*DI10	10(CN1 - 45)	00232323h				
PD13	*DO1	1(CN1 - 22)	0004h				
PD14	*DO2	2(CN1 - 23)	000Ch				
PD15	*DO3	3(CN1 - 24)	0004h				
PD16	*DO4	4(CN1 - 25)	0007h				
PD17			0003h				
PD18	*DO6	6(CN1 - 49)	0002h				
PD19	*DIF		0002h				
PD20	*DOP1	D-1	0000h				
PD21			000h				
PD22	*DOP3	D-3	0000h				
PD23			0000h				
PD24	*DOP5	D-5	0000h				
PD25	\		0	\	\setminus	\setminus	N I
PD26			0				\
PD27			0				$ \ $
PD28			0				\
PD29	\		0	\			\
PD30			0	\	\		

(a)

No.					
PA19	*BLK	000Bh			

, OFF ON .

가 No.PA19 가 . No.PA19 ,

(b)

No.					
PA01	*STY	0000h			

, OFF ON .

파라미터 No.PA01 0 0 0 0 0 0 1: 2: 3: 4:

(c)

No.					
PA02	*REG	0000h			

, OFF ON . . (AL.37)

5:

```
파라미터 No.PA02
0 0 ______
00:
```

• MR-J3-10A

• MR-J3-20A 700A

• MR-J3-11KA(4)

01 : FR-BU(-H) \cdot FR-RC(-H) \cdot FR-CV(-H)

02:MR-RB032

03:MR-RB12

04: MR-RB32

05: MR-RB30

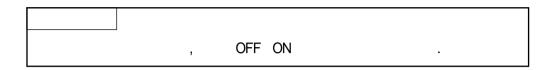
06:MR-RB50

08 : MR-RB31

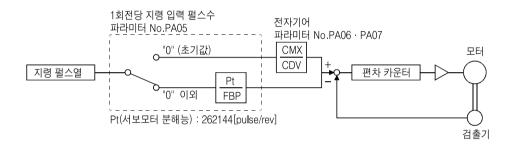
09: MR-RB51

FA: MR-J3-11KA(4)

UP


(d) No. PA03 *ABS 0000h OFF ON 파라미터 No.PA03 0 0 0 (15) 0: ABS DIO 2: ABS (MBR) (e) No. PA04 *AOP1 0000h A - 1 OFF ON CN1 - 23 파라미터 No.PA04 0 0 0 CN1-23 No.PD14 0:

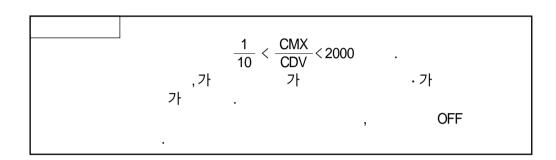
1:


(MBR)

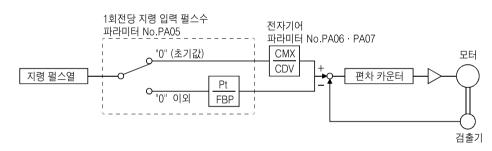
(f) 1

No.						
PA05	*FBP	1	0	0 · 1000 ~ 50000		


```
No.PA05 "0"( ) ( No.PA06 · No.PA07)가
."0" 1 가 .
, 가
```



No.PA05		
0	(No.PA06 · No.PA0	7)가
1000 ~ 50000	1	[pulse]


(g)

No.								
PA06	CMX		()	1	1~1048576		
PA07	CDV		()	1	1~1048576		

<u></u> 소주의

,

$$\frac{\text{CMX}}{\text{CDV}} = \frac{\text{No.PA06}}{\text{No.PA07}}$$

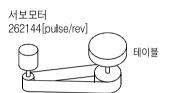
• 1 10μm

$$: Pb = 10[mm]$$

: n = 1/2

: Pt = 262144[pulse/rev]

$$\frac{\text{CMX}}{\text{CDV}} = 0.0 \cdot \frac{\text{Pt}}{\text{S}} = 0.0 \cdot \frac{\text{Pt}}{\text{n} \cdot \text{Pb}} = 10 \times 10^{-3} \cdot \frac{262144}{1/2 \cdot 10} = \frac{524288}{1000} = \frac{65536}{125}$$


, CMX=65536, CDV=125

1 0.01。

: 360_o/rev

: n = 625/12544

: Pt = 262144[pulse/rev]

타이밍 밸트 : 625/12544

$$\frac{\text{CMX}}{\text{CDV}} = ... \frac{\text{Pt}}{...} = 0.01 \cdot \frac{262144}{625/12544 \cdot 360} = \frac{102760448}{703125} \dots (5.1)$$

CMX가

가

가

CMX

$$\frac{\text{CMX}}{\text{CDV}} = \frac{102760448}{703125} = \frac{822083.6}{5625} \frac{822084}{5625}$$

, CMX=822084, CDV=5625

(h)

No.					
PA08	ATU	0001h			
PA09	RSP	12	1~32		

.

(No.PA08)

.

		No.()
0		PB06 · PB08 · PB09 · PB10
1	1	PB06 · PB07 · PB08 · PB09 · PB10
2	2	PB07 · PB08 · PB09 · PB10
3		

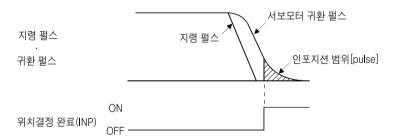
()

No.	
PB06	
PB07	
PB08	
PB09	
PB10	

(No.PA09)

가

,


		[Hz]
1		10.0
2		11.3
3	♠	12.7
4		14.3
5		16.1
6		18.1
7		20.4
8		23.0
9		25.9
10		29.2
11		32.9
12		37.0
13		41.7
14	↓	47.0
15	'	52.9
16		59.6

		[Hz]
17		67.1
18	١ ,	75.6
19	♠	85.2
20		95.9
21		108.0
22		121.7
23		137.1
24		154.4
25		173.9
26		195.9
27		220.6
28		248.5
29		279.9
30		315.3
31	'	355.1
32		400.0

(i)

No.						
PA10	INP	100	pulse	0~10000		

(INP) No.PC24

(j)

No.						
PA11	TLP	100.0	%	1~1000		
PA12	TLN	100.0	%	1~1000		

가 .

(h)

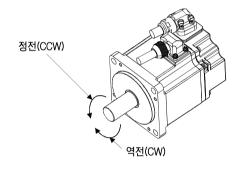
No.					
PA13	*PLSS	0000h			

OFF ON 3

. A • B

4

0010h		NP TITLE
0011h	+	NP H
0012h	A B	PP T T T T T T T T T T T T T T T T T T
0000h		PP TITIT
0001h	+	PP FLFLFL FLFLFL
0002h	A B	PP J T J T J T T T T T T T T T T T T T T


(I)

No.					
PA14	*POL	0	0 · 1		

, OFF ON .

.

No.14		
	()	()
0	CCW	CW
1	CW	CCW

(m)

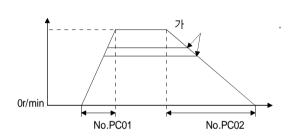
No.						
PA15	*ENR	4000	pulse /rev	1 ~ 100000		

, OFF ON .

가 (A ,B) .A ·B 4

No.PC19

A · B 1/4 가 .

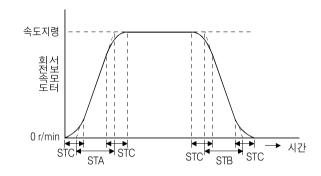

, 4.6Mpps(4)가 .

(n)

No.							
PC01	STA	가	0	ms	0 ~ 50000		
PC02	STB		0	ms	0 ~ 50000		
PC05	SC1	1	100	r/min			
PC06	SC2	2	500	r/min			
PC07	SC3	3	1000	r/min	0~] , ,
PC08	SC4	4	200	r/min] ()
PC09	SC5	5	300	r/min			
PC10	SC6	6	500	r/min			
PC11	SC7	7	600	r/min			

() ,

.



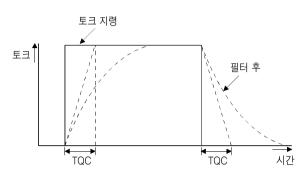
, 가 3000r/min , 0r/min 1000r/min 1s 가 , 3000(3s) .

(o) S 가

No.							
PC03	STC	S 가	0	ms	0~1000		

· . S 가

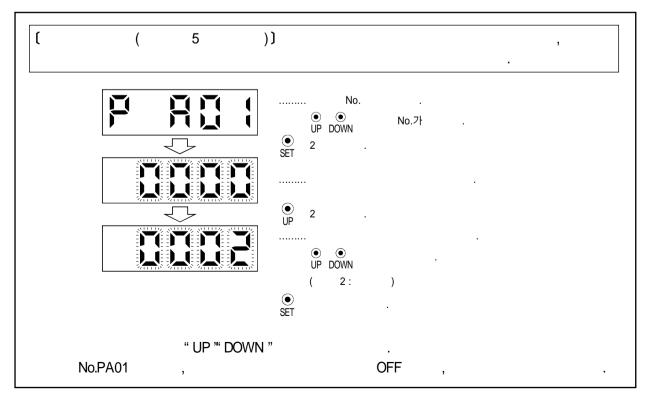
7\
$$\frac{2000000}{STA}$$
, $\frac{2000000}{STB}$

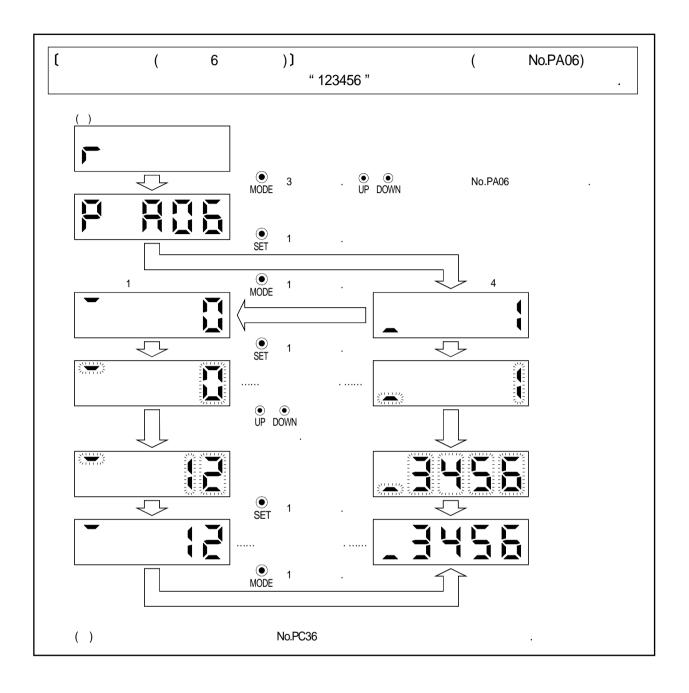

() STA=20000, STB=5000, STC=200

7\ : 100[ms]
$$\left(\frac{2000000}{20000} = 100[ms] < 200[ms] \right)$$

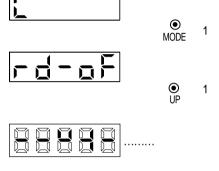
100[ms] .
: 200[ms] $\left(\frac{2000000}{5000} = 400[ms] > 200[ms] \right)$
200[ms] 7\cdot .

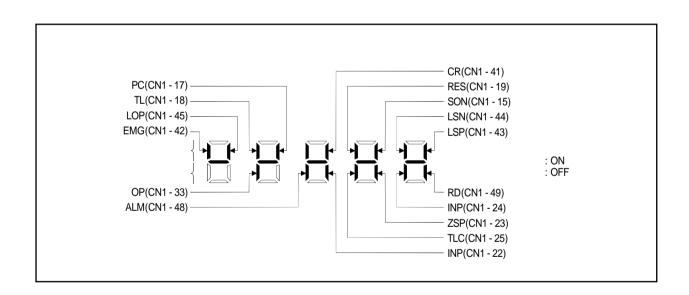
(p)

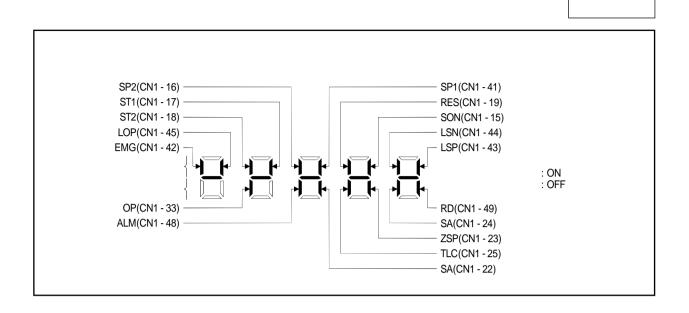

No.						
PC04	TQC	0	ms	0~20000		

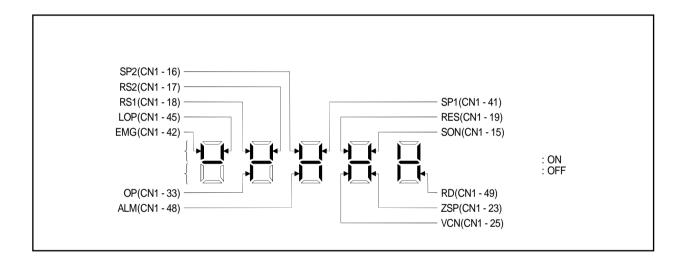

.

TQC:

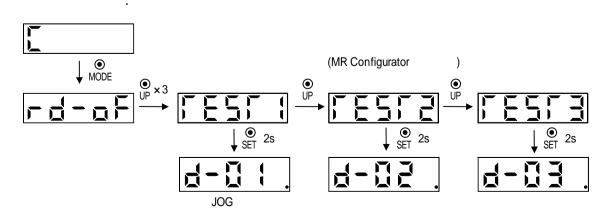

```
4.3.8
                                              가
                                 . 4.3.7
4.3.7 (2)
MODE
UP
              No.가 PA01
                          PA19
                               . DOWN
  MODE
 UP DOWN
                         No.
 SET
                    No.
 ( 6
                         . < MODE >
                                                )
  SET
  UP DOWN
  SET
                            OFF ON .
```



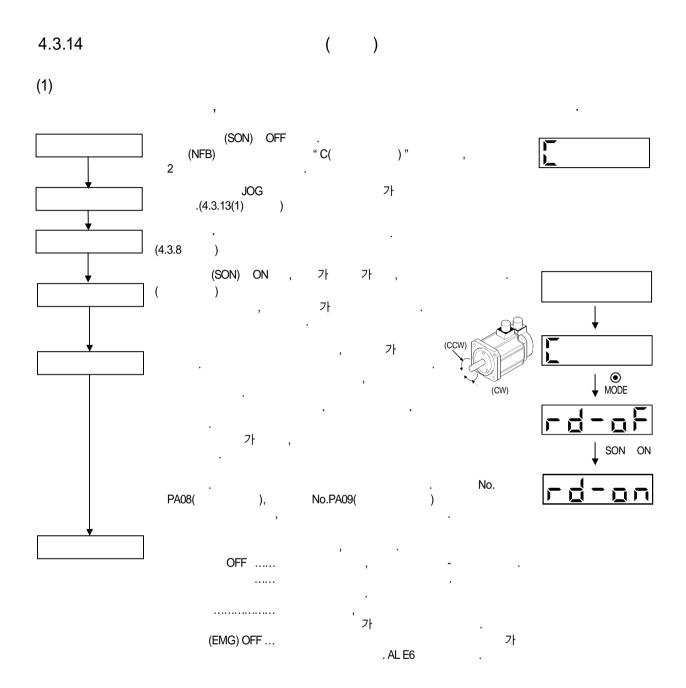


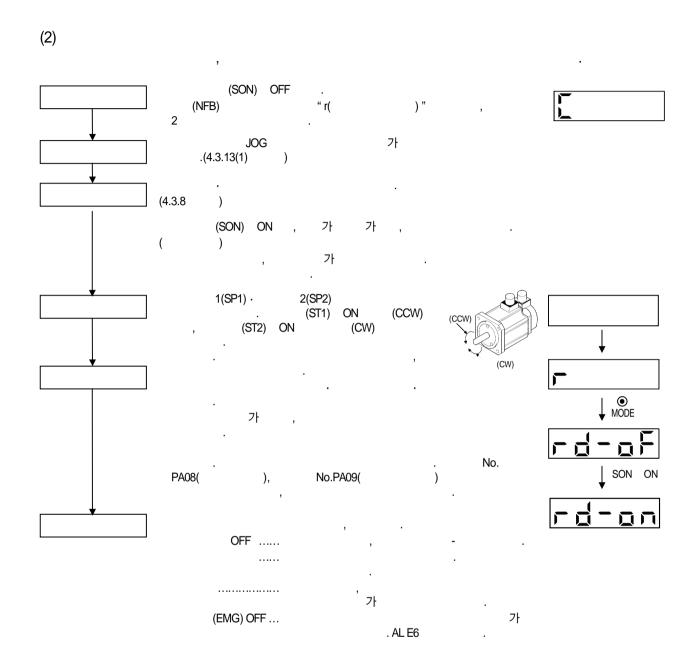

4.3.9

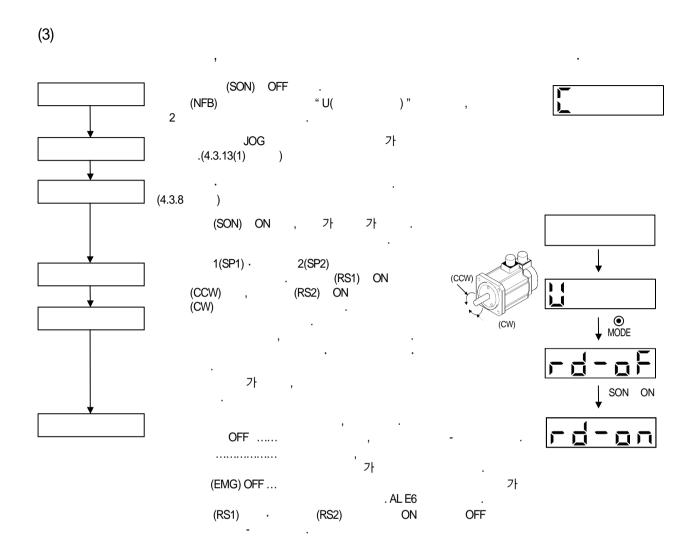
, , , 7 , 7 , ON/OFF ...



4.3.10 1) (CCW) 2) 가. 가. 3) 가. 4) 가. 5) 가. 가. 6) 가. 7)) 8) 가 가. 4.3.11) 4.3.12 가

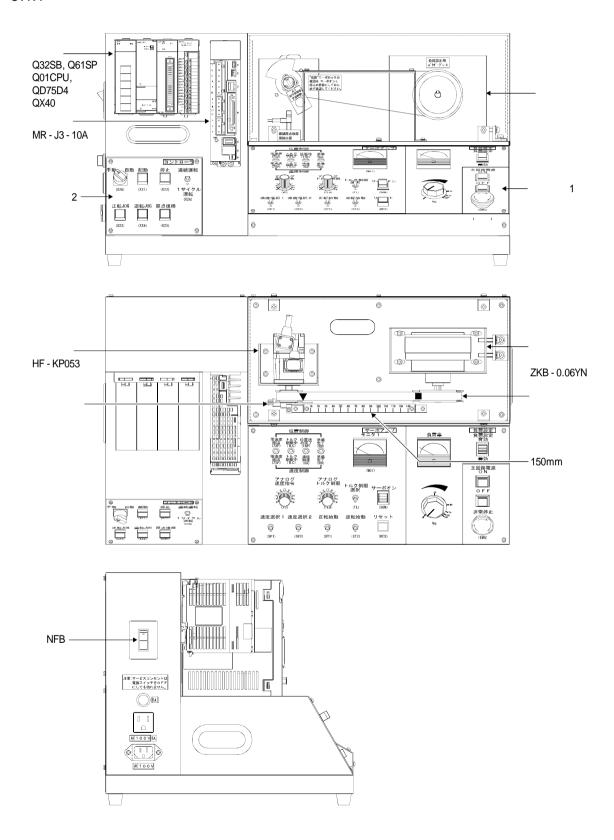

4.3.13


,

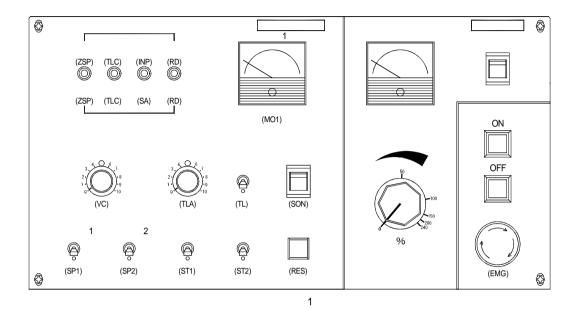


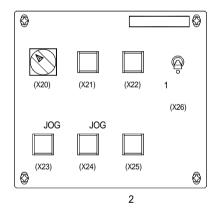
		. (EMG)	·
No.PA	.03 MR Confi OFF	gurator(-)가
(1) JOG	JOG		
1) · " UP [®] DOWN " MR - Configurator(-)	가 ,	
[r/min] 가 [ms]	200 1000	0~	
" UP " " DOWN "	CCW		(CCW)
MR - Configurator(- 2) JOG JOG フト " N " UP * DOWN " JOG フト 6.3) MODE " ." MODE "	JOG " UP ™ DOWN "	, JOG ,
3) JOG JOG 2s	가," MODE " ·	7 1	," SET "

```
(MR Configurator가
(2)
                            1
            5.3.4(7) .)
(3)
                                             가
  1) .
  SON OFF
  2)
             가
                      " MODE "
                           ." MODE "
                   가
  4.3.6(2)
                                        " UP " DOWN "
  3)
                           OFF
```



4.3.15	•					
4.3.9 r		ي 4.3.13 ^۲	J	MR - J3		*
			(高),	(中), (低)		
VC				-		
		가	,			
DO				·	,	
		가		,		
		가		,		
()	,		MR Configura	tor가 .		

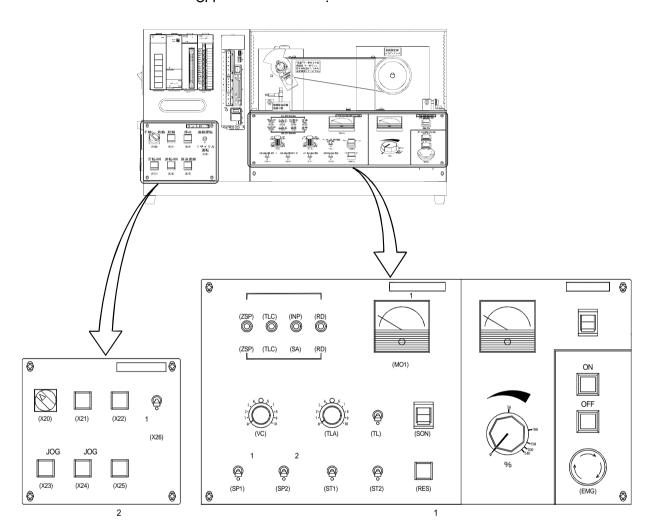
MEMO		


한국미쓰비시전기오토메이션(주)


5.1 AC

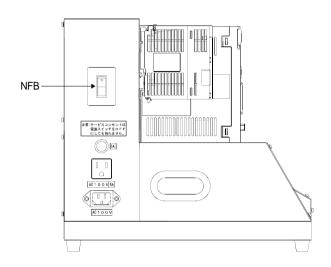
5.1.1

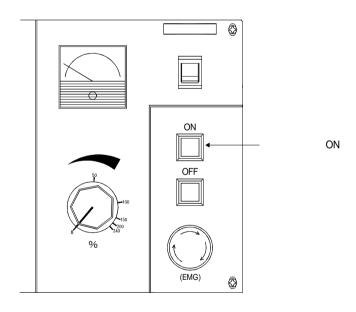
5.1.2



5. 2 MR-J3

5.2.1


(1) OFF .


5.

(2) AC100V (2 2) .

NFB ON .

ON . .

5.

(3)

4.3.8

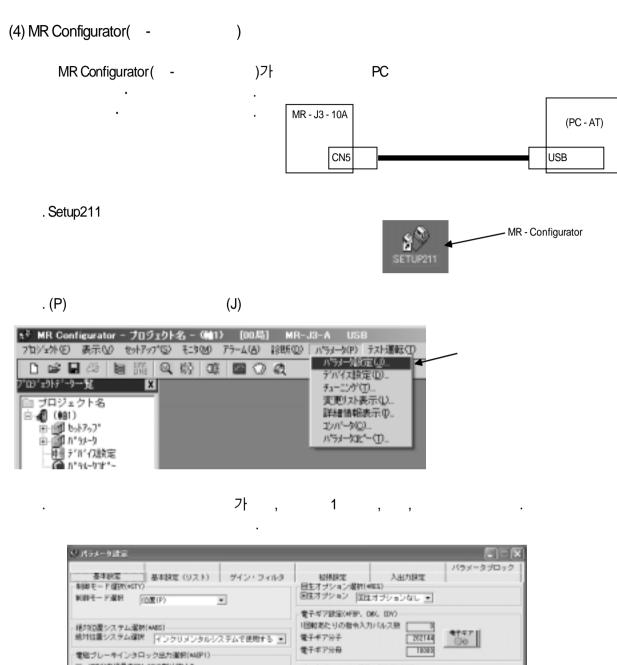
* 가 OFF

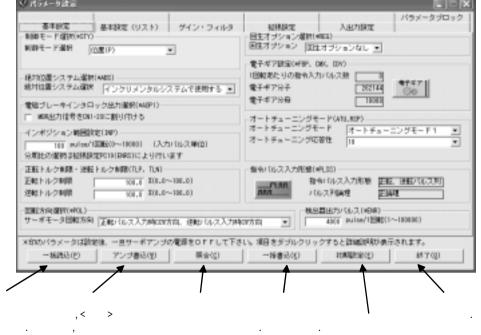
(a)

No.									
PA01	*STY					0000h		0000	0002
PA02	*REG					0000h		0000	0000
PA03	*ABS					0000h		0000	0000
PA04	*AOP1	A - 1				0000h		0000	0000
PA05	*FBP	1				0		0	0
PA06	CMX	()			1		262144	262144
PA07	CDV	()			1		10000	10000
PA08	ATU					0001h		0001	0001
PA09	RSP					12		18	18
PA10	INP					100	pulse	100	100
PA11	TLP					100.0	%	100.0	100.0
PA12	TLN					100.0	%	100.0	100.0
PA13	*PLSS					0000h		0000	0000
PA14	*POL					0		0	0
PA15	*ENR					4000	pulse/rev	4000	4000
PA16						0		0	0
PA17						0000h] \	0000	0000
PA18						0000h] \	0000	0000
PA19	*BLK			,	,	000Bh		000C	000C

(b)

PB02 V PB03 I PB04 I PB05 PB06 (PB07 I PB08 I PB09 V PB10 PB11 PB12 PB13 I PB14 N PB15 I PB16 N PB17 PB18	FILT VRFT PST FFC GD2 PG1 PG2 VG2 VIC VDC NH1 NHQ1 NHQ1 NHQ2 LPF	1	1))				0000h 0000h 0 0 500 7.0 24 37 823	ms % rad/s rad/s rad/s	0000 0000 0 0 500 7.0 24 37 823	0000 0000 0 0 500 7.0 24 37 823
PB02 V PB03 I PB04 I PB05 PB06 (PB07 I PB08 I PB09 V PB10 PB11 PB12 PB13 I PB14 N PB15 I PB16 N PB17 PB18	VRFT PST FFC GD2 PG1 PG2 VG2 VIC VDC NH1 NHQ1 NHQ1 NHQ2	1)					0000h 0 0 500 7.0 24 37	rad/s rad/s	0000 0 0 500 7.0 24 37	0000 0 0 500 7.0 24 37
PB03	PST FFC GD2 PG1 PG2 VIC VDC NH1 NHQ1 NHQ1 NHQ2	1)					0 0 500 7.0 24 37	rad/s rad/s	0 0 500 7.0 24 37	0 0 500 7.0 24 37
PB04 PB05 PB06 CPB07 PB08 PB10 PB11 PB12 PB13 PB14 NPB15 PB16 NPB17 PB18	FFC GD2 PG1 PG2 VG2 VIC VDC NH1 NHQ1 NHQ1 NHQ2	1		,					0 500 7.0 24 37	rad/s rad/s	0 500 7.0 24 37	0 500 7.0 24 37
PB05 PB06 (PB07 I PB08 I PB09 Y PB10 PB11 Y PB12 PB13 I PB14 N PB15 I PB16 N PB17 PB18	GD2 PG1 PG2 VG2 VIC VDC NH1 NHQ1 NHQ2	1							500 7.0 24 37	rad/s rad/s	500 7.0 24 37	500 7.0 24 37
PB06 (PB07 PB08 PB09 PB10 PB11 PB12 PB13 PB14 NPB15 PB16 NPB17 PB18 PB09 P	PG1 PG2 VG2 VIC VDC NH1 NHQ1 NHQ2	1							7.0 24 37	rad/s	7.0 24 37	7.0 24 37
PB07 I PB08 I PB09 Y PB10 PB11 Y PB12 PB13 I PB14 N PB15 I PB16 N PB17 PB18 I	PG1 PG2 VG2 VIC VDC NH1 NHQ1 NHQ2	1							24 37	rad/s	24 37	24 37
PB08 I PB09 Y PB10 PB11 Y PB12 PB13 I PB14 N PB15 I PB16 N PB17 PB18	PG2 VG2 VIC VDC NH1 NHQ1 NHQ1 NHQ2	1							37	rad/s	37	37
PB09	VG2 VIC VDC NH1 NHQ1 NHQ2	1										
PB10 PB11 PB12 PB13 PB14 PB15 PB16 PB17 PB18	VIC VDC NH1 NHQ1 NH2 NHQ2	1							823	rad/s	023	023 i
PB11 PB12 PB13 PB14 NPB15 PB16 NPB17 PB18	VDC NH1 NHQ1 NH2 NHQ2	1					ļ	_	00.7	1	22.7	
PB12 PB13	NH1 NHQ1 NH2 NHQ2	1							33.7	ms	33.7	33.7
PB13 I PB14 N PB15 I PB16 N PB17 PB18	NHQ1 NH2 NHQ2	1				_			980		980	980
PB14 N PB15 I PB16 N PB17 PB18	NHQ1 NH2 NHQ2	1							0		0	0
PB15 I PB16 N PB17 PB18	NH2 NHQ2	:							4500	Hz	4500	4500
PB16 N PB17 PB18	NHQ2								0000h		0000	0000
PB17 PB18		2	2						4500	Hz	4500	4500
PB18	I DE								0000h		0000	0000
	IDE								0000		()	()
PB19 V	LFF								3141	rad/s	3141	3141
	VRF1								100.0	Hz	100.0	100.0
PB20 V	VRF2								100.0	Hz	100.0	100.0
PB21									0.0		0.00	0.00
PB22									0.0		0.00	0.00
PB23 V	VFBF								0000h		0000	0000
PB24 *	*MVS								0000h		0000	0000
PB25 *E	*BOP1	B-1							0000h		0000	0000
PB26 *	*CDP								0000h		0000	0000
PB27 (CDL								10		10	10
PB28 (CDT								1	ms	1	1
PB29 G	GD2B								7.0		7.0	7.0
PB30 F	PG2B								37	rad/s	37	37
PB31 V	VG2B								823	rad/s	823	823
	VICB								33.7	ms	33.7	33.7
	VRF1B								100.0	Hz	100.0	100.0
	VRF2B								100.0	Hz	100.0	100.0
PB35									0.0		0.00	0.00
PB36	,					\	\	\	0.0	1\	0.00	0.00
PB37	\					\	\	\	100	1\	100	100
PB38	\					\	\	\	0	1 \	0.0	0.0
PB39	\					\	\	\	0	1 \	0.0	0.0
PB40	\					\	\	\	0	1 \	0.0	0.0
PB41	\					\	\	\	1125	1 \	1125	1125
PB42	\					\	\	\	1125	1 \	1125	1125
PB43	\					\	\	\	0004h	1 \	0004	0004
PB44	\					\	\	\	0.0	┤	0004	0004
PB45	\					\	\	\ -	0.0 0000h	┤	0000	0000
()	\					<u> </u>	\	V	UUUUI	1 \	0000	0000

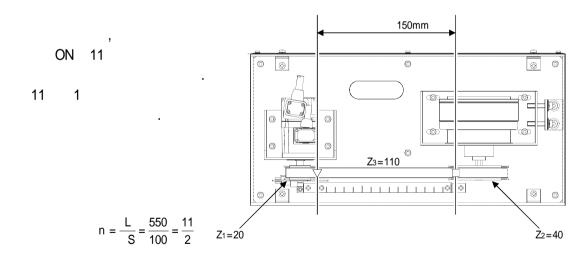

(c)

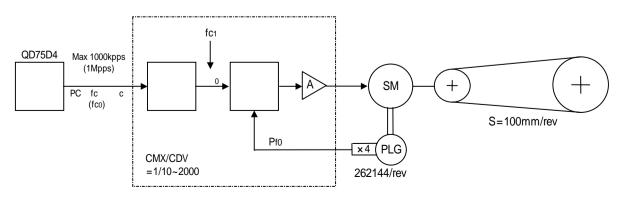

No.									
PC01	STA	가				0	ms	0	0
PC02	STB					0	ms	0	0
PC03	STC	S 가				0	ms	0	0
PC04	TQC					0	ms	0	0
PC05	SC1	1		,		100	r/min	100	100
FC05	301	1				100	1/111111	100	100
PC06	000	2				500	r/min	500	500
FC06	SC2	2				300	1/1111111	300	300
PC07	SC3	3				1000	/i.a	1000	1000
FC07	303	3				1000	r/min	1000	1000
DCOG	SC4	4				200	r/min	200	200
PC08	504	4				200	1/111111	200	200
PC09	SC5	5				300	r/min	300	300
1 5009	303	5				300	1/111111	300	300
PC10	SC6	6				500	r/min	500	500
1010	300	6				500	1/ITIII1	300	300
PC11	SC7	7				800	r/min	800	800
FOII	307	7				000	1/111111	000	
PC12	VCM					0	r/min	0	0
FCIZ	VCIVI					U	1/111111	U	
PC13	TLC					100.0	%	100.0	100.0
PC14	MOD1	1				0000h		0002	0002
PC15	MOD2	2				0001h		0003	0003
PC16	MBR					100	ms	100	100
PC17	ZSP					50	r/min	50	50
PC18	*BPS					0000h		0000	0000
PC19	*ENRS					0000h		0000	0000
PC20	*SNO					0		0	0
PC21	*SOP					0000h		0000	0000
PC22	*COP1	C - 1				0000h		0000	0000
PC23	*COP2	C-2				0000h		0000	0000
PC24	*COP3	C-3				0000h		0000	0000
PC25						0000h		0000	0000
PC26	*COP5	C-5				0000h		0000	0000
PC27						0000h		0000	0000
PC28						0000h		0000	0000
PC29						0000h] \	0000	0000
PC30	STA2	가 2		,)	0	ms	0	0
PC31	STB2	2				0	ms	0	0
PC32	CMX2	2				1		1	1
PC33	CMX3	3				1		1	1

No									
No.									
PC34	CMX4	4				1		1	1
PC35	TL2	2				100.0	%	100.0	100.0
PC36	*DMD					0000h		0000	0000
PC37	VC0					0	mV	0	0
1 007	VO0					0	IIIV		
PC38	TP0					0	mV	0	0
FC36	170					0	IIIV		
PC39	MO1	1				0	mV	0	0
PC40	MO2	2				0	mV	0	0
PC41	\		\	\	N	0	<u> </u>	0	0
PC42	\			\	\	0]\	0	0
PC43				\	\	0] \	0000	0000
PC44					\	0] \	0000	0000
PC45			\	\	\	0] \	0000	0000
PC46					\	0] \	0000	0000
PC47	\			\	\	0] \	0000	0000
PC48			\	\	\	0		0000	0000
PC49	\		\	\	\	0	\	0000	0000
PC50	\		\	\		0		0000	0000

(d)

No.									
PD01	*DIA1	ON 1				0000h		0C00	0C00
PD02						0000h		0000	0000
PD03	*DI 1	1(CN1 - 15)				00020202h		00020202	00020202
PD04	*DI2	2(CN1 - 16)				00212100h		00212100	00212100
PD05	*DI3	3(CN1 - 17)				00070704h		00070700	00070700
PD06	*DI4	4(CN1 - 18)				00080805h		00000505	00000505
PD07	*DI5	5(CN1 - 19)				00030303h		00030303	00030303
PD08	*DI6	6(CN1 - 41)				00202006h		00060606	00060606
PD09						00000000h		00000000	00000000
PD10	*DI8	8(CN1 - 43)				00000A0Ah		000808000	000808000
PD11	*DI9	9(CN1 - 44)				00000B0Bh		00202000	00202000
PD12	*DI10	10(CN1 - 45)				00232323h		00232323	00232323
PD13	*DO1	1(CN1 - 22)				0004h		0002	0002
PD14	*DO2	2(CN1 - 23)				000Ch		000C	000C
PD15	*DO3	3(CN1 - 24)				0004h		0004	0004
PD16	*DO4	4(CN1 - 25)				0007h		0007	0007
PD17						0003h		0003	0003
PD18	*DO6	6(CN1 - 49)				0002h		0002	0002
PD19	*DIF					0002h		0002	0002
PD20	*DOP1	D-1				0000h		0000	0000
PD21						000h		0000	0000
PD22	*DOP3	D-3				0000h		0000	0000
PD23						0000h		0000	0000
PD24	*DOP5	D-5				0000h		0000	0000
PD25	\		\	\setminus		0	\	0000	0000
PD26						0		0000	0000
PD27						0		0000	0000
PD28			$ \ \ $			0		0000	0000
PD29						0		0000	0000
PD30					\	0	\	0000	0000

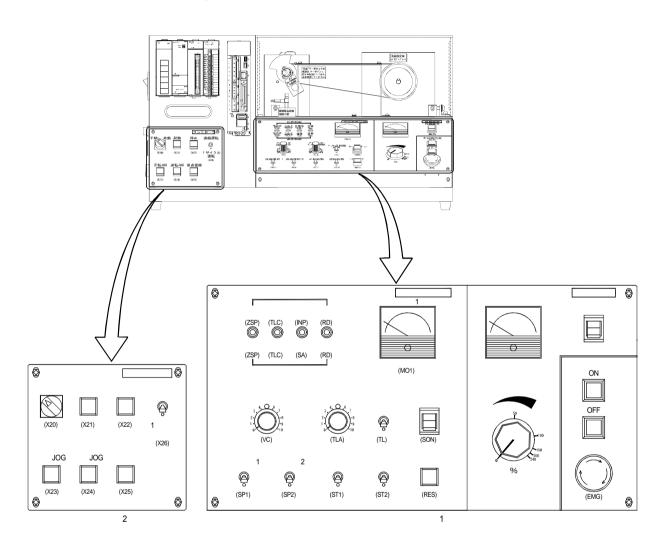

```
(5)
   (a)
               (SON) ON
   (b) JOG
               JOG
                                         가
                           ON
                  ON
                                         가
               JOG
                            ON
                  ON
   (c)
                           ON
                              3.5.2
                    /1
          1
                    /1
 2000r/min .....
 1000r/min
  500r/min
                                                                                10r/min B
                                                              - 10r/min
 - 500r/min ··
- 1000r/min ...
- 2000r/min ....
                              100
                                                        75
                                                                75
                                                                        75
                                                                                            150
                                                                                                       150
                                                                                                      mm)
```


() A, B, C ,

A=500ms, B=1s, C=2s

(d) () .

No.		
1		L=550mm(1 (周))
2		Z1=20
3		Z2=40
4		Z3=110
5		J _{P1} =0.109kgcm ²
6		J _{P2} =0.709kgcm ²
7		Ja=0.61kgcm ²
8		Jм=0.052kgcm ²
9	1	S=100mm
10		P _{f0} =262144P/rev




```
4.3.7
(e)
              ( PA06, PA07)
                                   c=0.001mm(1 μm) 가
                             \frac{262144 \times 0.001}{100} = \frac{32768}{12500} = \frac{8192}{3125}
                  8192/3125 , 가 3000 r/min fc
                                 c=0.001 mm(1 μm) 가 가
      1
                         N = \frac{fc \times 60 \times CMX/CDV}{P_{f0}} = \frac{fc \times 60 \times 8192/3125}{262144} = 3000 r/min
                         fc = \frac{262144 \times 3000}{60 \times 8192/3125} = 5000 \text{kpps} \times 1000 \text{kpps}
                                              1000kpps(1Mpps)
                   QD75D4
                                                 가
      1
                               c = 0.05 \text{mm} (50 \, \mu\text{m})
                             \frac{\text{CMX}}{\text{CDV}} = \frac{262144 \times 0.05}{100} = \frac{327680}{2500} = \frac{16384}{125}
                  16384/125 , 가 3000r/min fc
                 fc = \frac{262144 \times 3000}{60 \times 16384/125} = 100 \text{kpps} < 1000 \text{kpps}
                   QD75D4
                                                 1000kpps(1Mpps)
                   200kpps < 1000kpps가 ,
     6000r/min
                                          No.PA06): 16384
                                          No.PA07): 125 .
                                                             1000kpps
                                 , 6000r/min
                                          No.PA06): 262144
                                        No.PA07): 10000
                    (
                              No.PA10) .
                              No.PB07 · PB08) .
```

5.2.2

(1) OFF .

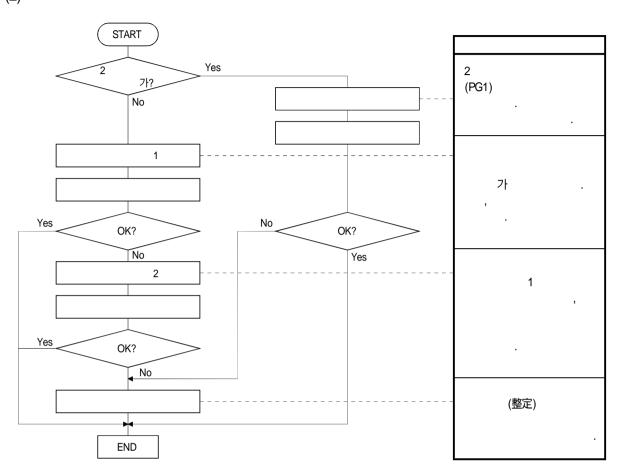
(2) 5.2.1 (2)

(3) () , 5.2.1 (3) (4) (a) 3 가 1~3(No.PC05~PC07) (5 7 , PC MR Configurator ON -1 ON 2 ON 1 OFF | → OFF $ON \rightarrow$ 1 ON 2 ON -1 OFF → OFF No.PC06 No.PC05 No.PC07 100r/min 1000r/min 500r/min 1~3(PC05~PC07) (VC) (b) 3 (1, 2) OFF () VC ON 가 가 가 , 5.2.2 (4) (c)

```
4.3.7
(c)
   가
         ( No.PC01), ( No.PC02)
     가
             No.PC01: 0 1000 (1 )
             No.PC02:0 2000(2)
   S 가
     7) ( No.PC01), ( No.PC02), S 7)
   (
        No.PC03)
          4.3.7 (2) (o)
          ( No.PA11 · PA12) ,
              ( No.PA11): 100% 33% 1/3 ,
                                             .)
              ON ,
   VC -
              ( No.PC37) ,
                                       0V ,
     가
                    No.PC37): 0mV mV
                      , CCW
                ON
           ch1 - ( No.PC39) ,
          1 ( No.PC14)
                                             가 .
         .0002: (+8V/
0003: (+8V/ )
       ..... 0002 :
```

	(No.PC36)		,			ı
	. 100 : 101 :						
1)				,			
2) 10V	r	1	١	(No.PC12)	0 2000	F,

5. 3


5.3.1 (單體)

. , 2,

(1)

	No.PA08					
()	0001		GD2(PG1(PG2(VG2(VIC(No.PB06) No.PB07) No.PB08) No.PB09) No.PB10)		No.PA09
2	0002	No.PB06	PG1(PG2(VG2(VIC(No.PB07) No.PB08) No.PB09) No.PB10)	GD2(No.PB06) No.PA09
	0003	NU.FBUO			GD2(PG1(PG2(VG2(VIC(No.PB06) No.PB07) No.PB08) No.PB09) No.PB10)
	0000		GD2(PG2(VG2(VIC(No.PB06) No.PB08) No.PB09) No.PB10)	PG1(No.PB07)

(2)

5.3.2

(1) () ,

가 .

(a) 1

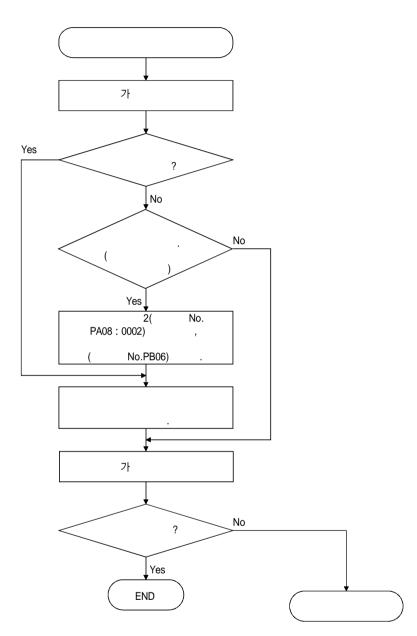
1 .

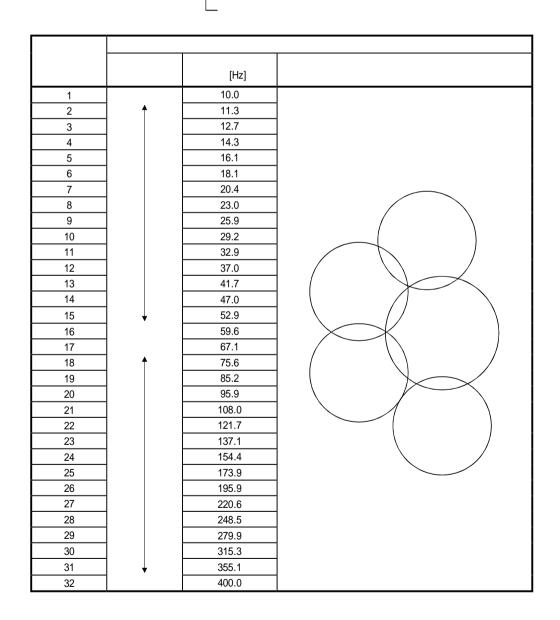
1 .

No.		
PB06	GD2	
PB07	PG1	
PB08	PG2	
PB09	VG2	
PB10	VIC	

1 フト • 2000r/min 5s 가 • フト 150r/min • フト 100 • フト フト 10% フト フト フト

No.		
PB07	PG1	
PB08	PG2	
PB09	VG2	
PB10	VIC	


(2)


PG1, PG2, VG2 VIC 0, 1 ON No.PA08 No.PA08 No.PB06

(3)

.

.

5.3.3

, 가 .

, (No.PB01) (No.PB13~PB16) , 기 .

(1)

(a) .

No.		
PB06	GD2	
PB09	VG2	
PB10	VIC	

(b)

1	·	
2	,	
3		·
4	, , 2·3 가 .	5.4.1 · 5.4.2
5	(整定)	

(c) $(No.PB09) \\ 7! \\ (Hz) = \frac{1}{(1+) \times 2} \\ (VIC: No.PB10) \\ 7! \\ 7! \\ 7! \\ (ms) \\ 2000~3000$

(2)

(a)

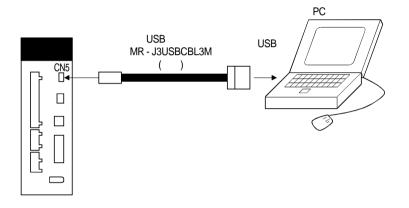
•

/(1+

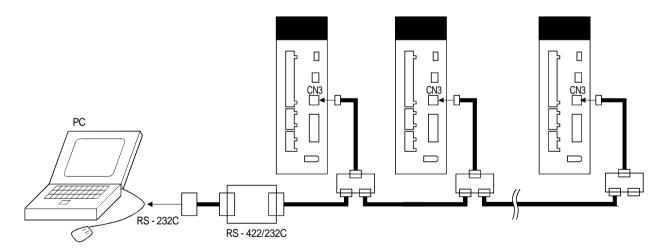
No.	
PB06	GD2
PB07	PG1
PB08	PG2
PB09	VG2
PB10	VIC

(b)

1			
2			
3	,		
4	,		
5			
6	3~5	, , 가 .	5.4.1
7	(整定)		

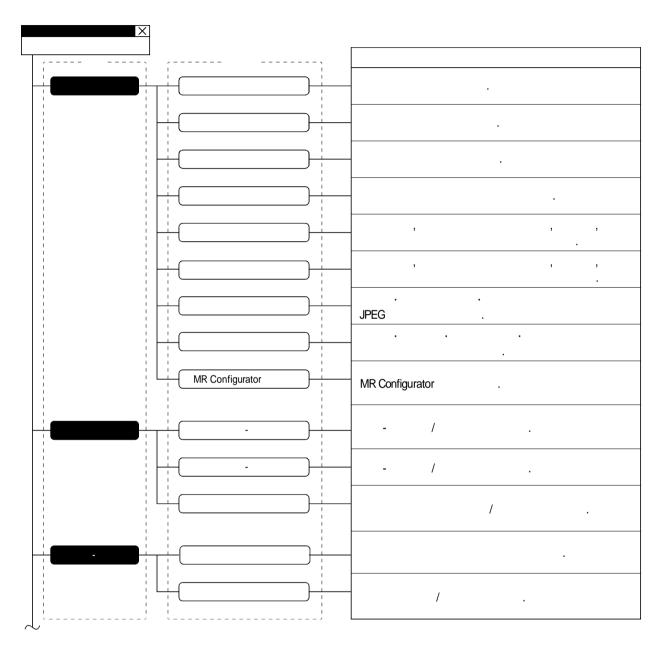

```
(c)
                ( No.PB07)
                                              .
가
                                                            가 .
                                                         \times \left(\frac{1}{4} \sim \frac{1}{8}\right)
                            (1+
                      No.PB09)
                (
                      가
                          (Hz) = \frac{1}{(1+
                                                                  )×2
                (
                         No.PB10)
                                                                가
                          가
                                                    가
                가
                           (ms)
                                    2000~3000
                           /(1+
```

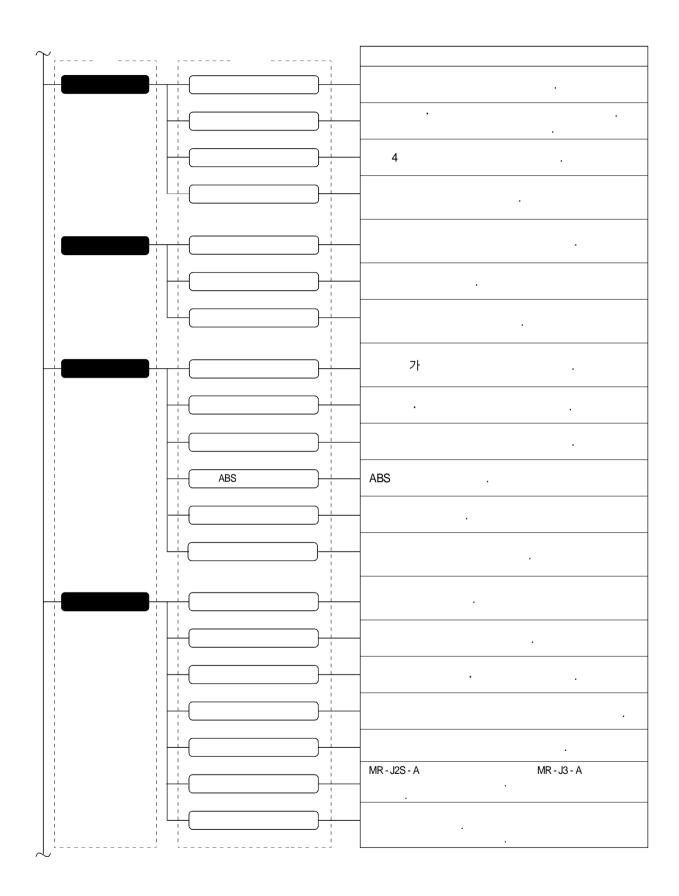
5.3.4 MR Configurator

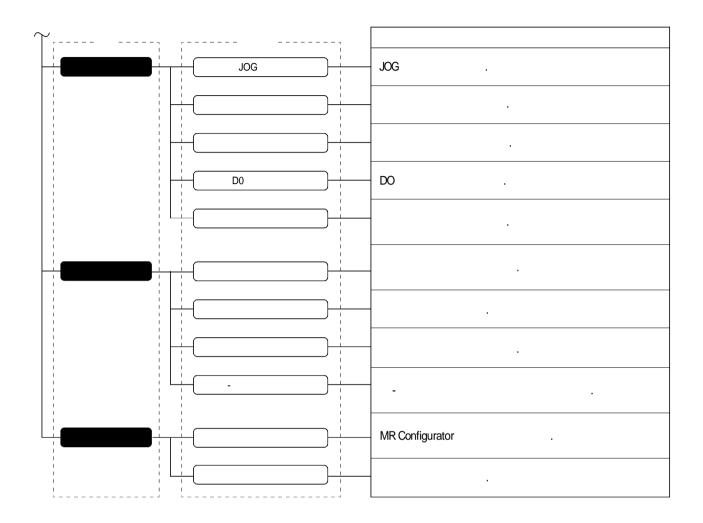

(1) I/F

MELSERVO - J3 , RS - 422 가 USB .
가 (), (, ,
LED), I/O , 가 .
가 .

USB

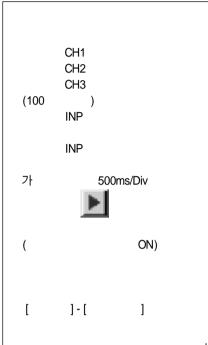



RS-422

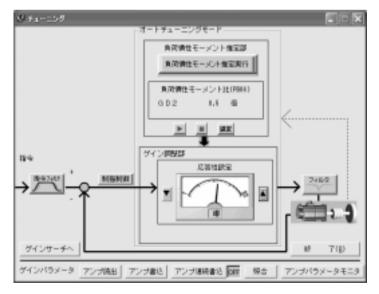


(2) MR Configurator

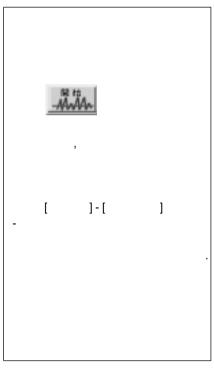
MR Configurator ,



(3) ([]-[])

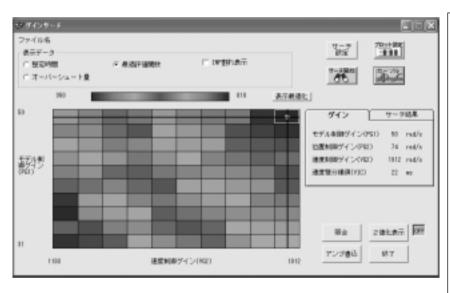

.

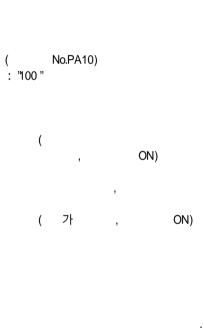


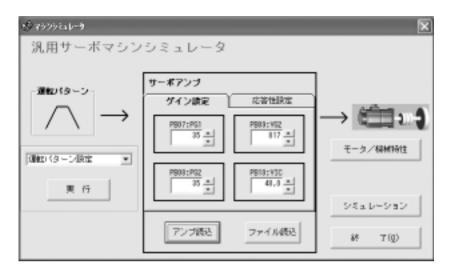

(4) ([]-[])

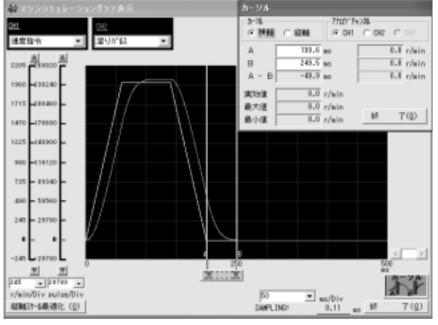
,

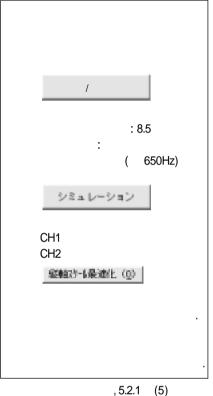
가 .


(6) ([]-[]) , 가 , 가 가 가 , 가


71


. , 가 MR Configurator


MR Configurator 가 2(VG2)」


"" 가

(d)

 \triangle

가 . •[] ,

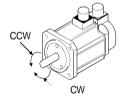
(8) ()([]-[])

(a) ·

MR Configurator

, EMG - DOCOM """ " 가

1

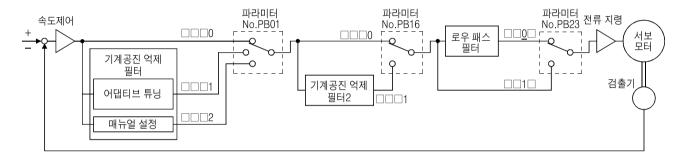

. MR Configurator

.

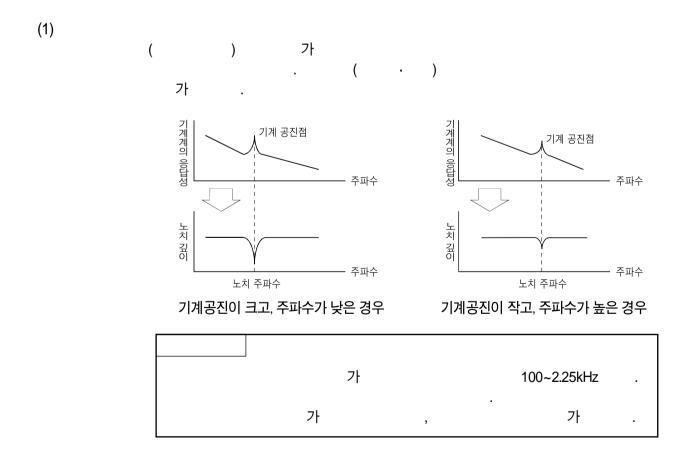
	[r/min]	200	0~
가	[ms]	1000	0~50000
[pulse]		4000	0~9999999

② 医医洗色谱板 モータ回転連載 (班) 211 r/win 权 (() (0-6900) 転(图) (3) 残念种电仪式 1008 85 (0-58800) 一种生 (0) 4001 Pulse 两位的(s) (0-00088899) 州政策タリア(D) □ LSP,LSMを自動OMにする □ 移動量+移動方向の最初の2相信号オンまで移動する パルス移動量単位選択 6 指令入力パルス単位 5/9強制停止(0) ○ 株出器パルス単位 7(0) SH1FTキーにて5/9強制停止が行えます。

"	"	CC	W	
"	"	CW	I	•
íí	"	и	, ,,	

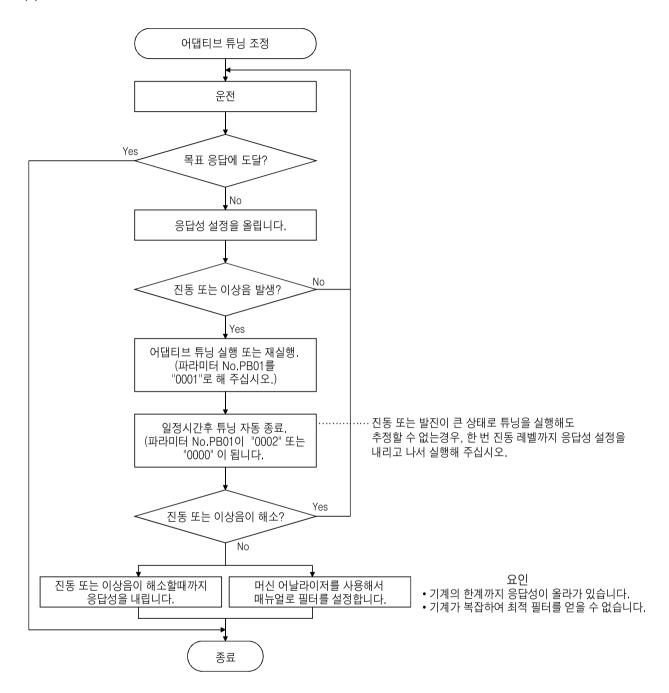

(b)

•

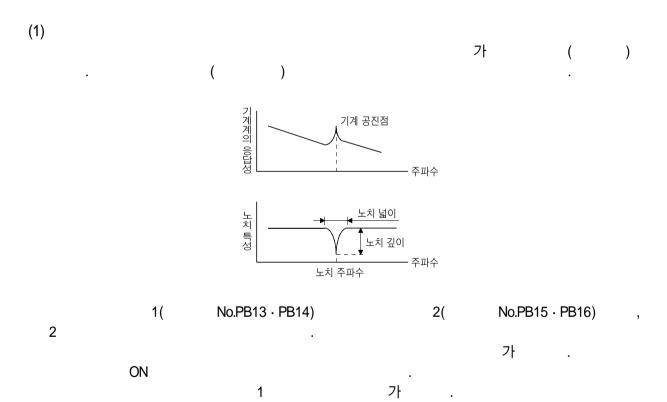

MR Configurator가

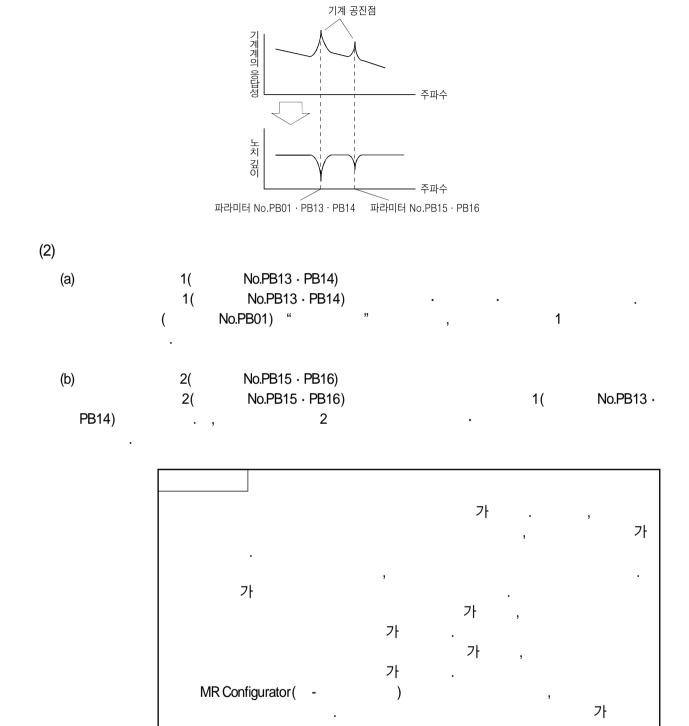
(9))([]-[] ((a) (G)> SON ON < ON SON OFF 2 : 2000r/min 가 : 1200ms : - 100000pulse 10s COW CW : 1000r/min 가 : 1200ms : 12000pulse 3 TIMES(3)----- STOP SYNC(0) -----O (SON) ON SPN(1000) -----1000r/min STC(1200) ----- 가 1200ms MOV(12000) ----- CCW 12000 TIM(10) ----- 10 SPN(2000) -----2000r/min MOV(- 100000) - - - - CW 100000 (<Enter>) 1, 2 가 2 가 () [(^r) 砂ブログラム運転 プログラム名C:WProgram FileoWMELSERVOWSETUP211WSWMPLE,PRG 運転プログラム TIMES(S) SPN(1000) STC(1000) MGY(100000) TIM(S) SPN(1000) STC(500) MGY(-100000) STOP 尼 動(位) リセット (1) 集 (E) $\mathcal{T}(\underline{0})$ 現在の実行回数: 0 SH1FTキーにてリセットが行えます。

5.4.1

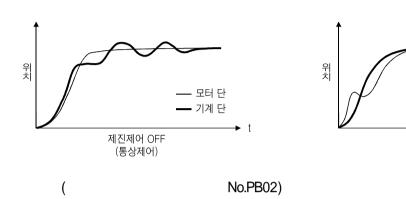


(2) (No.PB01) 파라미터 No.PB01 0 0 0


0	OFF	()
1		No.PB13 No.PB14
2		


() No.PB13 · PB14 .

(3)


5.4.2

5.4.3

(1) 가 , .

가

, (No.PB19), (No.PB20) 가 .

(2) (No.PB02)

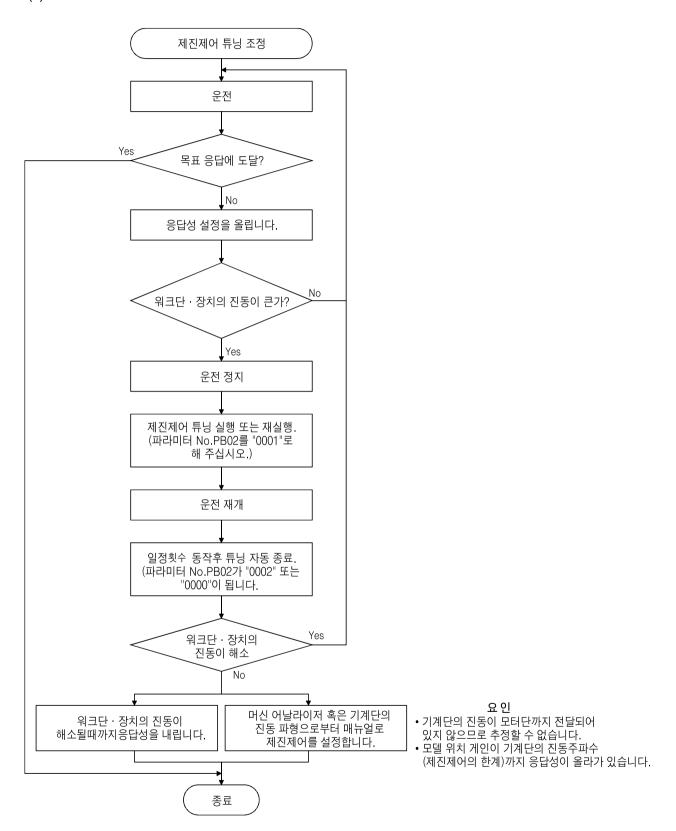
> 파라미터 No.PB02 0 0 0

0	OFF		()
1	()	No.PB19 No.PB20
2			

- 모터 단 **-** 기계 단

제진제어 ON

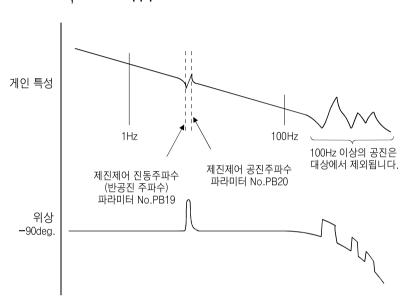
() No.PB19 · PB20

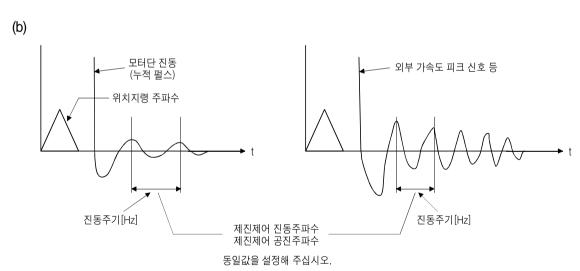

```
( No.PA08)가 2(" 0002 "),
(" 0003 ")

가 1.0Hz~100.0Hz

( No.PB02 · PB19 · PB20 · PB33 · PB34)

,
```


(3)



(4)


```
FFT
( No.PB07) 7 PG1

- 1/2 (1.5 × PG1) >
```

5.4.4 (1) 가 , 가 $(rad/s) = \frac{VG2}{1 + GD2} \times 10$ No.PB23 " 1 " , No.PB18 가 (2) No.PB23) 파라미터 No.PB23 0: () 1: (No.PB18 5.4.5 (1) (a) (Lock) (b) 가) , (c)

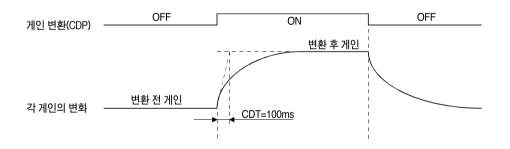
(2) CDP(No.PB26) · CDS(No.PB27) PG2, VG2, VIC GD2 CDP 파라미터 No.PB26 외부신호 CDP > 지령펄스 주파수 누적 펄스 변환 모델 속도 비교기 CDS 파라미터 No.PB27 GD2 파라미터 No.PB06 유효한 GD2값 GD2B 파라미터 No.PB29 PG2 파라미터 No.PB08 유효한 PG2값 PG2B 파라미터 No.PB30 VG2 파라미터 No.PB09 유효한 VG2값 VG2B 파라미터 No.PB31 파라미터 No.PB10 유효한 VIC값 VICB 파라미터 No.PB32 VRF1 파라미터 No.PB19 유효한 VRF1값 VRF1B 파라미터 No.PB33 파라미터 No.PB20 유효한 VRF2값 VRF2B 파라미터 No.PB34

(3)

, No.PA08() " 3 " ,

•		•

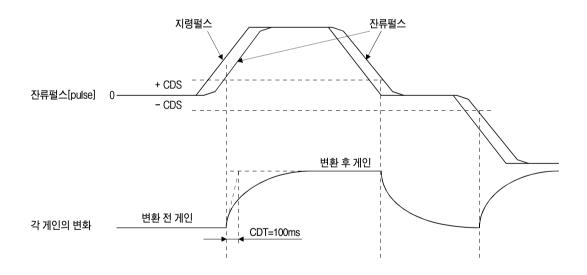
No.			
PB06	GD2		
PB07	PG1	rad/s	,
PB08	PG2	rad/s	
PB09	VG2	rad/s	
PB10	VIC	ms	
PB29	GD2B		
PB30	PG2B	rad/s	
PB31	VG2B	rad/s	
PB32	VICB	ms	
PB26	CDP		
PB27	CDS	kpps pulse r/min	·
PB28	CDT	ms	·
PB33	VRF1B	Hz	·
PB34	VRF2B	Hz	·


(a)	No.PB06~PB10			
		·		가 .
(b)		(No.PB29)		가
		(No.PB06)		
(c)		No.PB30), No.PB32)	(No.PB31),

```
( No.PB26)
(d)
                     . 1
                                2
  " 1 "
                                  (CDP)
                                                                      (CDP)
         No.PD03~PD08 · PD10~PD12
                                              가
                      0 0
                                                No.PB29~PB32
                                        (CDP)
                                              No.PB27 )
No.PB27 )
                                  2:
                                  3:
                                             ( No.PB27 )
                                                (CDP) ON )
(CDP) OFF )
                                  0:
                    No.PB27)
(e)
                     No.PB26)
                                             kpps
                                            pulse
                                             r/min
                   No.PB28)
(f)
              (
                    1
                   가 ,
```

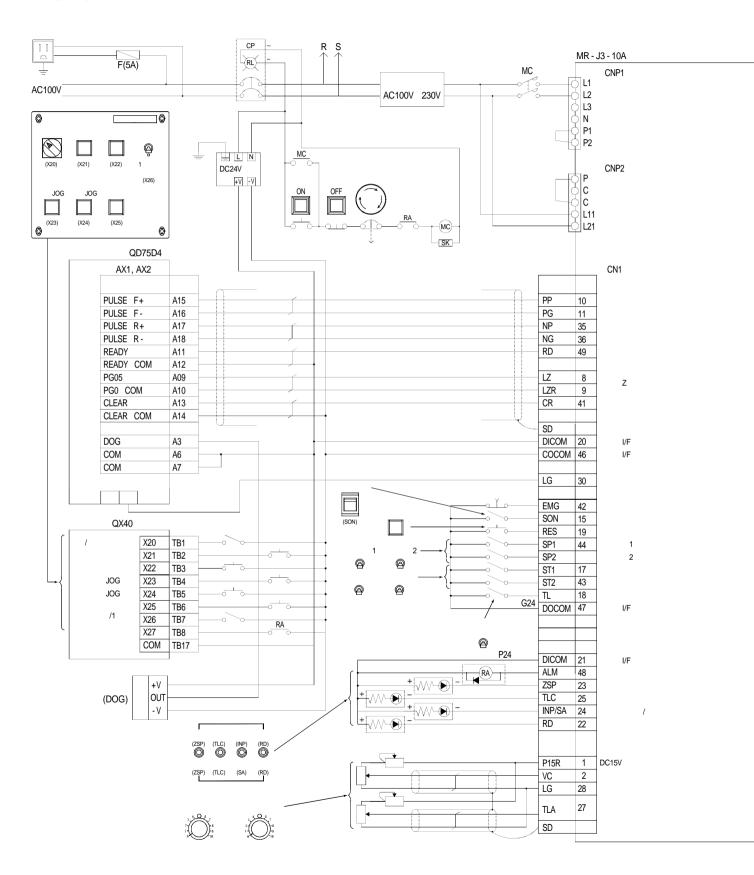
(4)

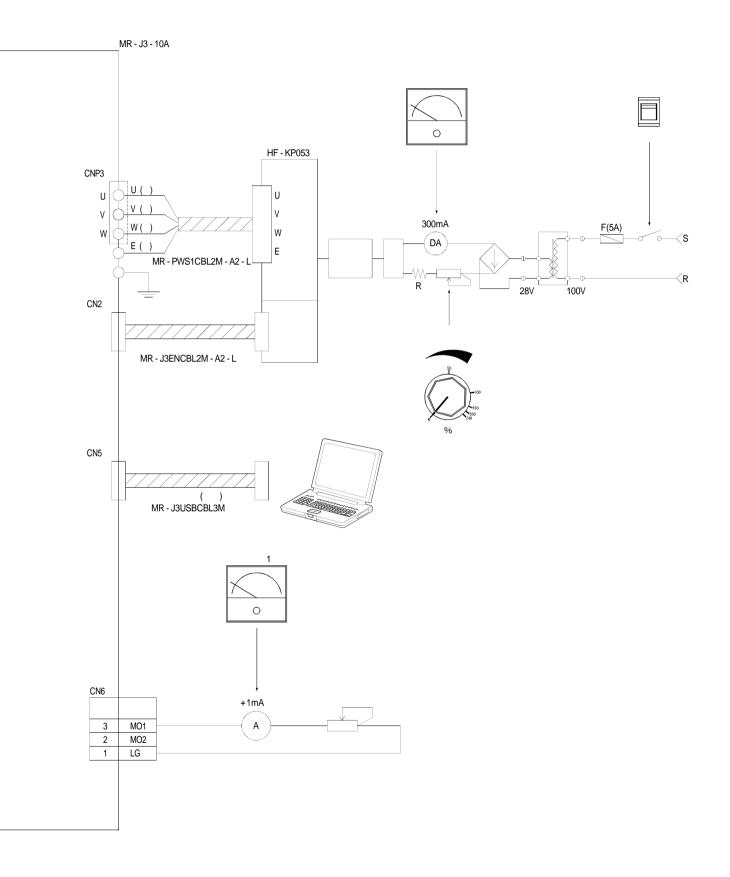
(a)


No.			
PB06	GD2	4.0	
PB07	PG1	100	rad/s
PB08	PG2	120	rad/s
PB09	VG2	3000	rad/s
PB10	VIC	20	ms
PB29	GD2B	10.0	
PB30	PG2B	84	rad/s
PB31	VG2B	4000	rad/s
PB32	VICB	50	ms
PB26	CDP	0001 (ON/OFF)	
PB28	CDT	100	ms
PB33	VRF1B		Hz
PB34	VRF2B		Hz

	100	
4.0	10.0	4.0
120	84	120
3000	4000	3000
20	50	20

(b)


No.			
PB06	GD2	4.0	
PB07	PG1	100	rad/s
PB08	PG2	120	rad/s
PB09	VG2	3000	rad/s
PB10	VIC	20	ms
PB29	GD2B	10.0	
PB30	PG2B	84	rad/s
PB31	VG2B	4000	rad/s
PB32	VICB	50	ms
PB26	CDP	0003	
PB27	CDS	50	pulse
PB28	CDT	100	ms



	100		
4.0	10.0	4.0	10.0
120	84	120	84
3000	4000	3000	4000
20	50	20	50

MEMO		

5.4.6

MEMO		

한국미쓰비시전기오토메이션(주)

6. 1

, AC

 $JL \hspace{1cm} JM \times$

(2) TL TM \times 0.5~0.8

6.1.1 JL 가 , . . .

AC JL $(kg \cdot cm^2)$, 6.1 .

6.1.3

(1)

6.1

1.	Ø Di □ Di	$ J_L = \frac{\cdot \cdot \cdot L}{32} \cdot \left(D_1^4 - D_2^4 = \frac{W}{8} \cdot \left(D_1^2 + D_2^2\right) \dots (6-1) \right) $ $ J_L : $
2.	Raaabbb	$JL = W\left(\frac{a^2 + b^2}{3} + R^2\right)(6-2)$ $a, b, R: [cm]$
3.	Z ₂ V P _B	$ J_L = W \cdot \left(\frac{V}{600} \right)^2 = W \cdot \left(\frac{1}{2 N} \cdot \frac{V}{10} \right)^2 = W \cdot \left(\frac{S}{20} \right)^2 $
4.	*E	$JL = \frac{W}{4} \cdot D^2 + JP$
5.	J _B B J ₃₁ A J ₂₂ J _A N ₂	$ J_L = J_{11} + (J_{21} + J_{22} + J_A) \cdot \left(\frac{N_2}{N_1}\right)^2 $ $ + (J_{31} + J_B) \cdot \left(\frac{N_3}{N_1}\right)^2 \dots (6-5) $ $ J_A, J_B : A, B $

(2)

6.2 .

	$T_{L} = \frac{F}{2 \times 10^{3}} \cdot \left(\frac{V}{N}\right) = \frac{F \cdot S}{2 \times 10^{3}} \dots (6-6)$ $F : \qquad () [N]$
Z ₂ $\stackrel{\downarrow}{\downarrow}$, F . F-Fc+μ(W·g+Fg)
T ₁ O Z ₂	$T_{L} = \frac{Z_{1}}{Z_{2}} \cdot \frac{1}{} \cdot T_{LO} + T_{F} \dots (6-8)$ $T_{LO} : \qquad (\bot) \qquad [N \cdot m]$ $T_{L} : \qquad [N \cdot m]$ $T_{F} : 7^{h} \qquad [N \cdot m]$
Z ₁	TL = TU + TF

6. 2

, 가 가 . ·

(1) () , 가 () .

, 가 가 .

(2) , (HC - MFS 30)가 , .

가 가 가 (m<2) . 가

(3) 1 o⁷} .

 $0 < \left(\frac{1}{5} \sim \frac{1}{10}\right) \times$

) 0 2.5.1

1. 가 m=1 가

6.3

, 가 Tpsa, tc, Tpsd, ts tst ・ . 가 (JL) 가 가 가 Ta Td . , ts , TL

.

6.3.1 가 Ta

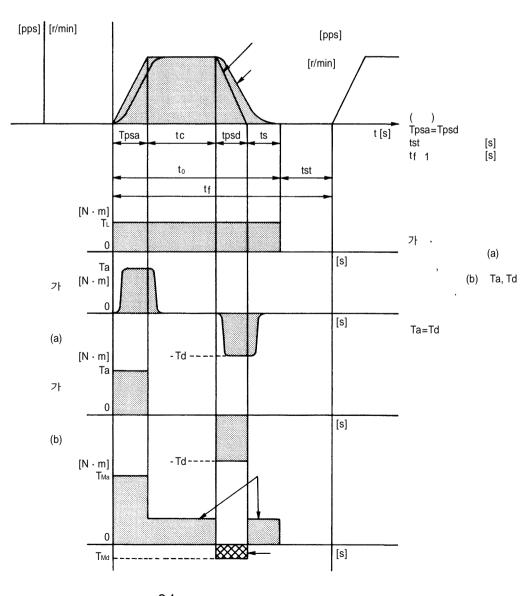
가 Ta (6 - 13) ,

$$Ta = \frac{(JL + JM) \cdot No}{9.55 \times 10^4 \cdot Tpsa} \cdot (1 - \frac{Tpsa}{Tp}) [N \cdot m] \dots (6 - 13)$$

$$(7 - 14)$$

$$Ta = \frac{(J_L + J_M) \cdot No}{9.55 \times 10^4 \cdot Tpsa} [N \cdot m] (6-14)$$

6.3.2 Td


Td (6 - 15) ,

$$Td = \frac{(JL + JM) \cdot No}{9.55 \times 10^4 \cdot Tpsd} \cdot (1 - \frac{Tpsa}{Tp}) [N \cdot m](6 - 15)$$

$$(7 - 16)$$

$$Td = \frac{(JL + JM) \cdot No}{9.55 \times 10^4 \cdot Tpsd} [N \cdot m] \dots (6-16)$$

6.3.3

6.3.4

6.1 ,

, 3

6.1 가 T_{Ma}

T M a = T L + Ta < T Mmax(6 - 17)

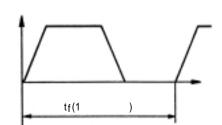
6.1 T_{Md}

T M d = T L - Td < T Mmax(6 - 18)

Trms

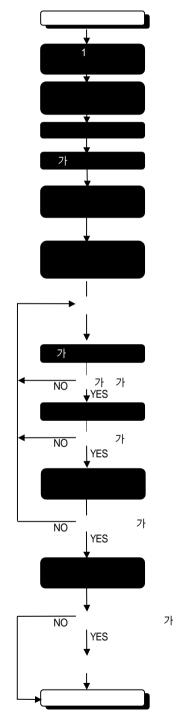
Trms T_M (6 - 19)

Trms ,


. Trms TM 가 6.1 Trms

 $Trms = \sqrt{\frac{T_{Ma}^2 \cdot Tpsa + T_L^2 \cdot (t_0 \cdot Tpsa \cdot Tpsd \cdot Ts) + T_{Md}^2 \cdot Tpsd}{t_f}} \quad [N \cdot m] \dots (6 \cdot 20)$

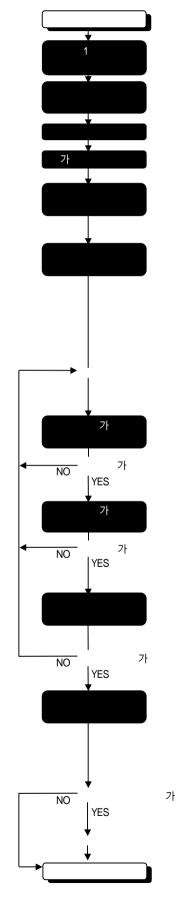
, , , , ,


1 1

. 6.3.5

6.3.5

(1) -

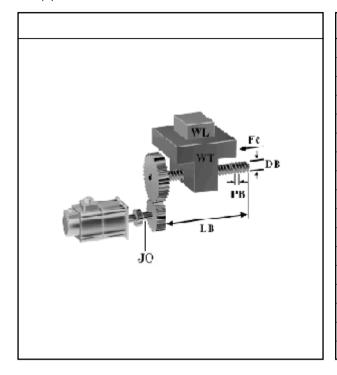

1 S=PB×1/n×1/nm [mm/rev]	
N0=V0/ S [r/min]	
ts=3×1/Kp[s]	
가 Tsa=Tsd=t0 - (L/V0×60+ts) [s]	
$\label{eq:JB} \begin{split} JB = & \{ (n \times 0.0078 \times (LB/10))/32 \} \times (DB/10)^4 \left[Kg \cdot cm^2 \right] \\ JF = & (WT + WL) \times (S/20)^2 \left[Kg \cdot cm^2 \right] \\ JL = & JMG + JMB + JF + \{ JG + JC + J0 + JB \times (1/n)^2 \} \times (1/nm)^2 \left[Kg \cdot cm^2 \right] \end{split}$	
$TL = \{(Fc + \mu \times (WT + WL) \times g + FG)\} \times S\}/(2000 \times \times) [N \cdot m]$	
プト フト () フト L=(S/Pf)×1000 [μm/pulse]	(0.5~0.8) · Ttyp > TL m=JL/JM < NR > N0 L <
가 (フト) TMa = {((JL+JM)×N0)/(9.55×10000×Tsa)}+TL [N・m] フト, フト	Tmax > TMa
$ \begin{array}{c} (&) \\ TMd= -\{((JL+JM)\times N0)/(9.55\times 10000\times Tsa)\} + TL \ [N\cdot m] \\ 7 \\ 300\% \qquad Rp=\{(TMa , TMd \qquad)\}/Ttyp\}\times 100 \\ \end{array} $	Tmax > TMd Rp < 300
tc=t0 - Tsa - Tsd - ts [s] Trms= $\sqrt{\text{(TMa}^2 \times \text{Tsa+TL}^2 \times \text{tc+TMd}^2 \times \text{Tsd})/\text{tf}}}$ [N · m] 7 , 100% Rrms=(Trms/Ttyp) × 100	Ttyp > Trms Rrms < 100
Ea=0.1047 × NO/2 × TMa × Tsa [J] Ed=0.1047 × NO/2 × TMd × Tsd [J] Ef=0.1047 × NO × TL × tc [J] 7 Em=Ea, Ed, Ef (-) Pr={ m × Em - (Wa × t) - Ec}/tf [W]	Pr>0 >Pr
100% Ld=(Pr/Ptyp) × 100	Ld < 100

	WT		ka
	WL		kg
	Fc		kg N
	FG		N
	1/n		IN
	JG		kg · cm²
	JC		kg · cm²
	JO		kg · cm²
-	PB		mm
- -	DB		mm
-	LB		mm
	μ		
	VO		mm/min
	L		mm
	tO		S
1	tf		S
_ · 1	S		mm/rev
	NO		r/min
	ts		S
가	Tsa		S
	Tsd		S
-	JB		kg · cm²
	JF		kg · cm²
	JL		kg · cm²
	TL		N·m
가 (가) TMa		N · m
() TMd		N · m
	Trms		N · m
	Pr		W
가	Ea		J
	Ed		J
	Ef		J
(-)	Em		J
	Pmax		W
	Emax		J
	1/nm	1	
	Pf	1	pulse/rev
	Кр		1/s
	JMG	1	kg · cm²
	JMB	1	kg · cm²
	JM	1	kg · cm²
	m	1	
	NR	1	r/min
가	g		m/s²
	Tmax		N · m
	Ttyp	1	N·m
	m	1	%
	Wa	1	W
	t		S
	EC	1	J
	Ptyp	1	W
	tmax		S

(1)	max, min	가		(:Tmax)		,			
(2)	1. 2. 3. n	' }	(: l1, l2)	가	(量)	,	(量)
1.									
^									

2. , ,

(2)

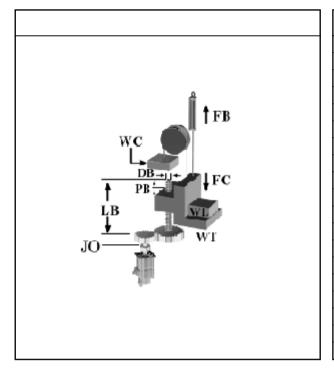


0.8) · Ttyp > Tlu 0.8) · Ttyp > Tld /JM < N0
> TMau > TMdu
> TMad > TMdd 00
$(tf - 2 \times t0 + 2 \times ts)$
Trms <100
> Pr 00
00

	WT	kg
	WL	kg
	WC	kg
	Fc	N N
	FG	N
	1/n	IN IN
	JG	kg · cm²
	JC	kg · cm²
	JO	kg · cm²
	PB	mm
<u>-</u>	DB	mm
<u> </u>	LB	mm
-	LD	11111
	μ	
	VO	mm/min
	L	mm
	tO	S
1	tf	S
1	S	mm/rev
	NO	r/min
	ts	S
가	Tsa	S
	Tsd	S
-	JB	kg · cm²
	JF	kg · cm²
	JL	kg · cm²
	TL	N·m
가 (가) TMa	N · m
() TMd	N · m
	Trms	N·m
	Pr	W
가	Ea	J
<u>'</u>	Ed	J
	Ef	J
(-)	Em	J
	Pmax	W
	Emax	J
	1/nm	1
	Pf	1 pulse/rev
	Кр	1/s
	JMG	1 kg · cm²
	JMB	1 kg · cm²
	JM	1 kg · cm²
	m	1
	NR	1 r/min
가	g	m/s²
·	Tmax	1 N · m
	Ttyp	1 N · m
	m	1 %
	Wa	1 W
	t	S
	EC	1 J
	Ptyp	1 W
	tmax	S

6.3.6

(1) -


	WT:	200.00	kg
	WL:	50.00	kg
	Fc:	0.01	N
	FG:	0.01	N
(NL/NM)	1/n :	1/1	
	JG:	0.20	kg · cm²
	JC:	2.00	kg · cm²
	J0 :	0.10	kg · cm²
-	PB:	10.00	mm
-	DB:	20.00	mm
-	LB:	1500.00	mm
	:	0.90	
	μ:	0.10	
	V0:	20000.00	mm/min
1	L:	400.00	mm
	tO:	1.50	S
1	tf:	2.00	S

1.	1
2.	$N0 = \frac{V0}{S} = $
	, () , 가 . , 가 ,가 , , , .(Kp 70 .) 가
3.	$ts = 3 \times \frac{1}{Kp} = $ $3 \times 1/70 = $ 0.043 [s]
	Tsa = Tsd = t0 - $\left(\frac{L}{V0} \times 60 + ts\right)$ = $1.5 - (400/20000 \times 60 + 0.043)$ = 0.257 [s]

```
JB = \frac{1}{32} \times \times 0.0078 \times \frac{LB}{10} \times \left(\frac{DB}{10}\right)^4 = \underbrace{\left[\frac{1}{32} \times 3.1416 \times 0.0078 \times \frac{1500}{10} \times \left(\frac{20}{10}\right)^4\right]}_{10}
                                                                                                                 = 1.838 \left[ \text{kg} \cdot \text{cm}^2 \right]
                                       JF=(WT+WL) × \left(\frac{S}{10 \times 2}\right)^2 = \left[(200+50) \times \left(\frac{10}{10 \times 2 \times 3.1416}\right)^2\right]
4.
                                                                                     = \begin{array}{|c|c|}\hline 6.333 & [kg \cdot cm^2]\\\hline ( & 7 \\ \end{array}
                                                                                                                                   JMG=0, 가
                                         \begin{aligned} & \mathsf{JMB=0} & ) \\ & \mathsf{JL=JMG+JMB+JF+} \left\{ \; \mathsf{JG+JC+J0+JB} \times \left(\frac{1}{\mathsf{n}}\right)^{\!\!2} \right\} \times \left(\frac{1}{\mathsf{nm}}\right)^{\!\!2} \end{aligned} 
                                            = 0+0+6.333+\{0.2+2+0.1+1.838\times(1)^2\}\times1^2 = 10.471 [kg·cm<sup>2</sup>]
                                                                                                                                                                                          가
                                                 . ( 가 g=9.8)
5.
                                        TL = \frac{\{(Fc + \mu \times (WT + WL) \times g + FG)\}}{1000} \times \frac{S}{2} \times \frac{1}{n}
                                             = \frac{\{0.01 + 0.1 \times (200 + 50) \times 9.8 + 0.01\}}{1000} \times \frac{10}{2 \times 3.1416} \times \frac{1}{0.9} = \boxed{0.433} [\text{N} \cdot \text{m}]
                                                                  Ttyp
                                                                                                            .
.)
JM m (
                                                                  Ttyp 50~80%
6.
                                           HC - MFS 30)
                                                                            HC-MFS73
                                                                                                                                                  MR-J2S-70
                                                                                 Ttyp = 2.4 > TL = 0.433
                                                                                                                       JL/30 = 0.349
                                                                                   JM = 0.6
                                                         ,가,
                                                                                                              가,
                                                                                                                          가 가
                                       TMa = \left\{ \frac{(JL + JM) \times N0}{9.55 \times 10000 \times Tsa} \right\} + TL = \boxed{\frac{(10.471 + 0.6) \times 2000}{9.55 \times 10000 \times 0.257} + 0.433}
7.가 .
                                                                                                = 1.335 [N·m] <
                                                                                                                                                                   Tmax 7.2
                                        TMd = -\left\{ \frac{(JL + JM) \times N0}{9.55 \times 10000 \times Tsa} \right\} + TL = \boxed{ - \frac{(10.471 + 0.6) \times 2000}{9.55 \times 10000 \times 0.257} + 0.433}
                                                                                                     = | -0.469 | [N \cdot m] <
                                                                                                                                                                       Tmax
                                                                                                                                                                                        7.2
```

8.	$Trms = \sqrt{\frac{Tma^2 \times Tsa + TL^2 \times (t0 - Tsa - Tsd - ts) + TMd^2 \times Tsd}{tf}}$ $= \sqrt{\frac{1.335^2 \times 0.257 + 0.433^2 \times (1.5 - 0.257 - 0.257 - 0.043) + (-0.469)^2 \times 0.257}{2}}$ $= \boxed{0.588 [N \cdot m] \langle}$ $Ttyp \qquad \boxed{2.4}$
9.	Ea = $0.1047 \times \frac{N0}{2} \times TMa \times Tsa$ = $0.1047 \times 2000/2 \times 1.335 \times 0.257$ = 35.932 [J] Ed = $0.1047 \times \frac{N0}{2} \times TMd \times Tsd$ = $0.1047 \times 2000/2 \times (-0.469) \times 0.257$ = -12.615 [J] Ef = $0.1047 \times N0 \times TL \times (t0 - Tsa - Tsd - ts)$ = $0.1047 \times 2000 \times 0.433 \times 0.943$ = 85.556 [J] (-) Em = (Ea, Ed, Ef
10.	. HC-MFS73 MR-J2S-70A : 2000 [r/min] 7 : 0.214 [s] : 1.335 [N·m] : -0.469 [N·m] : 0.588 [N·m]

(2) -

	WT:	80.00	kg
	WL:	50.00	kg
	WC:	100.00	kg
	Fc:	0.01	N
	FG:	0.01	N
(NL/NM)	1/n :	1/2	
	JG:	0.20	kg · cm²
	JC :	2.00	kg · cm²
	J0 :	0.10	kg · cm²
-	PB:	10.00	mm
-	DB:	20.00	mm
-	LB:	1500.00	mm
	:	0.90	
	μ:	0.10	
	V0:	10000.00	mm/min
/	L:	400.00	mm
	tO:	2.60	s
1	tf:	6.00	s
	FB:	0.00	N

1.	1 $\left(\begin{array}{cc} 7 \\ S = PB \times \frac{1}{n} \times \frac{1}{nm} = \end{array}\right)$ $\left[\begin{array}{cc} 1 \\ 10 \times 0.5 \times 1 \\ \end{array}\right] = \left[\begin{array}{cc} 5 \\ \end{array}\right] \left[\begin{array}{cc} mm/rev \\ \end{array}\right]$
2.	$N0 = \frac{V0}{S} = $ $10000/5.0 = $ $2000 [r/min]$ $< > : NO7!, , , , , VO , 1 S 7! .$
3.	7. $\frac{1}{1}$ \frac

```
JB = \frac{1}{32} \times \times 0.0078 \times \frac{LB}{10} \times \left(\frac{DB}{10}\right)^4 = \frac{1}{32} \times 3.1416 \times 0.0078 \times \frac{1500}{10} \times \left(\frac{20}{10}\right)^4
                                                                                                  = 1.838 \left[ \text{kg} \cdot \text{cm}^2 \right]
                                  JF = (WT + WL + WC) \times \left(\frac{S}{10 \times 2}\right)^{2} = \underbrace{\left[(80 + 50 + 100) \times \left(\frac{5.0}{10 \times 2 \times 3.1416}\right)\right]}_{}
4.
                                                                            = 1.456 \quad [kg \cdot cm^2]
                                                                                                                 JMG=0,
                                  JL = JMG + JMB + JF + \left\{ JG + JC + J0 + JB \times \left(\frac{1}{n}\right)^{2} \right\} \times \left(\frac{1}{nm}\right)^{2}
                                      = 0+0.040+1.456+\{0.2+2+0.1+1.838 \times (0.5)^2\} \times 1^2 = 4.256 [kg·cm²]
                                       . ( 가 g=9.8)
                                 TU = \frac{\{Fc + (WT + WL - WC) \times g\}}{1000} \times \frac{S}{2} = \frac{\{0.01 + (80 + 50 - 100) \times 9.8\}}{1000} \times \frac{5}{2 \times 3.1416}
                              \mathsf{TF} = \frac{\mu \times \{(\mathsf{WT} + \mathsf{WL} + \mathsf{WC}) \times \mathsf{g} + \mathsf{FG}\}}{1000} \times \frac{\mathsf{S}}{2} = \left| \frac{0.1 \times \{(80 + 50 + 100) \times 9.8 + 0.01\}}{1000} \times \frac{\mathsf{5}}{2 \times 3.146} \right|
5.
                                                                                                = 0.179 [N \cdot m]
                                   TLu = \frac{(TU+TF)}{0.9} = \left| \frac{(0.234+0.179)}{0.9} \right| = \boxed{0.459} [N·m]
                                   • ( - TU+TF) > 0
                                     TLd = -TU+TF =
                                                                                                                                    [N · m]
                                   • ( - TU+TF) < 0
                                     TLd = (-TU+TF) \times = (-0.234+0.179) \times 0.9 = -0.05 [N·m]
                                                         Ttyp
                                                                                              .)
JM m (
                                                          Ttyp 50~80%
                                                            JL가
                                     HC - KFS 15)
6.
                                                                                                      MR-J2S-40A
                                                                   HC-MFS43B

        Ttyp = 0.64
        >
        TLu= 0.459

        Ttyp = 0.64
        >
        TLd= -0.05

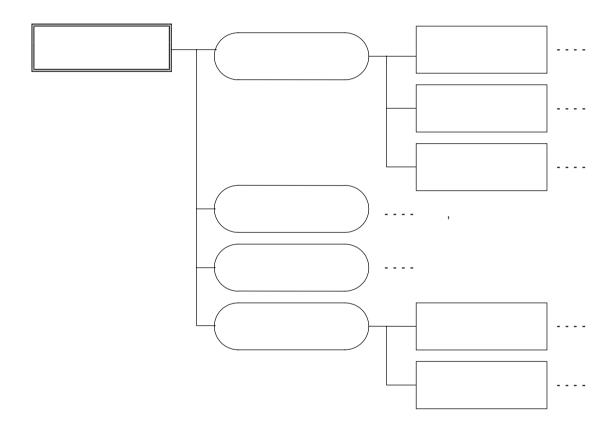
                                                                        JM= 0.42
                                                                                                    JL/15= 0.2837
```

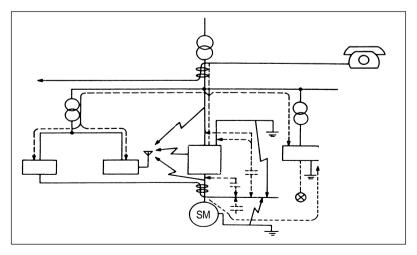
	, 가, 가, 가 . 가 가 가 ,
7. 가 ,	7\\ TMau = $\left\{ \frac{(JL+JM) \times N0}{9.55 \times 10000 \times Tsa} \right\} + TLu = \left[\frac{(4.256+0.420) \times 2000}{9.55 \times 10000 \times 0.157} \right] + 0.459$ $= \boxed{1.083 [N \cdot m] <} \qquad Tmax \boxed{1.9}$
	$TMdu = -\left\{ \frac{(JL+JM) \times N0}{9.55 \times 10000 \times Tsd} \right\} + TLu = \left[-\left\{ \frac{(4.256+0.420) \times 2000}{9.55 \times 10000 \times 0.157} \right\} + 0.459 \right]$ $= \left[-0.164 \right] [N \cdot m] < Tmax \qquad 1.9$
	, 가, 가, 가 . , 가 가 가 ,
8. 가,	$TMad = \left\{ \frac{(JL+JM) \times N0}{9.55 \times 10000 \times Tsa} \right\} + TLd = \left[\frac{(4.256+0.420) \times 2000}{9.55 \times 10000 \times 0.157} \right] + (-0.329)$ $= \boxed{0.911} [N \cdot m] < Tmax \boxed{1.9}$
	$TMdd = -\left\{ \frac{(JL+JM) \times N0}{9.55 \times 10000 \times Tsd} \right\} + TLd = \left[-\left\{ \frac{(4.256+0.420) \times 2000}{9.55 \times 10000 \times 0.157} \right\} + (-0.329) \right]$ $= \left[-0.252 \right] [N \cdot m] < Tmax \qquad 1.9$
	· · ·
	tc =t0 - Tsa - Tsd - ts = 2.6 - 0.157 - 0.157 - 0.043 = 2.243 [s]
9.	$Trms = \sqrt{\frac{(TMau^2 + TMad^2) \times Tsa + (TMdu^2 + TMdd^2) \times Tsd + (TLu^2 + TLd^2) \times tc + TU^2 \times (tf - 2 \times t0 + 2 \times ts)}{tf}}$ $= \sqrt{\frac{(1.083^2 + 0.911^2) \times 0.157 + ((-0.164)^2 + (-0.252)^2) \times 0.157 + (0.459^2 + 0.329^2) \times 2.243 + 0.234^2 \times (6 - 2 \times 2.6 + 2 \times 0.043)}{(-0.164)^2 + (-0.252)^2 \times 0.157 + (0.459^2 + 0.329^2) \times 2.243 + 0.234^2 \times (6 - 2 \times 2.6 + 2 \times 0.043)}}$
	=

11. 가	

6.4 , (,), 가 対策を担心に X 4 180 8 4 780 2 가 実建物がつかない アン・イグコンない **位置数据を一日 ▼ 4 のおけは 4 可見の**で 食用でつか (第-111-07日、知以下のキインチップです。) 減速機が1900なし アト・世 の 性理制限しい環境が多少を拡展の加 度と発送的の速度過ぎません。 テープル開発 (1) Windows3.1 · Windows95 Windows3.1 · Windows95 가 PC : 4MB : 1MB * DEPRE (2)) (3) . SI , MKS 6 - 12 6.15), &),) 9

(


),


5

7. 1

300V (布線), , 가 (··) (停電)

(電磁)

7. , ,

(1) (2) (3) (4) (5)	,	, 가	(가 , ,)	,	, , , (布線)		布線) (布線)	, 가 .
(1) (2) (3) (4) (5)	가		. ((布線) 가 ,)		(布線)		(布線)	
(1) (2) (3)	가 가		. ()		가 (FR - BL	(FR - BIF) F, FR - BSF0		,	
		,			가		(閉) 가	가		,

7. , , ,

7. 2

AC PWM 가 . ,

,

, (布線) 가 (30cm) .

 $10 \times \{Ig1+Ign+Iga+K \times (Ig2+Igm)\}$ [mA]

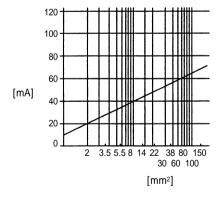
K:

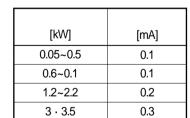
5.5mm² x 5m 5.5mm² x 50m SM Iga Iga Iga

		К
•	NV - SF NV - CF	1
	NV - CA NV - CS NV - SS	3

7.2

 Ig1 :
 (7.1)


 Ig2 :
 (7.1)


 Ign :
 (FR - BIF 1 4.4mA)

 Iga :
 (7.2)

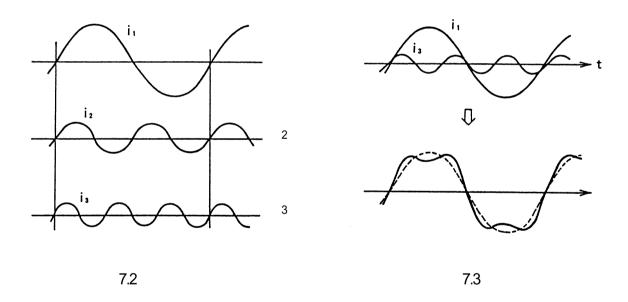
 Igm :
 (7.1)

7.1

(Igm)

[kW]	[mA]
0.1~0.6	0.1
0.7~3.5	0.15

(Iga)


7.1 CV 1km (lg1, lg2)

< > EN 가 가 . 7. , ,

7. 3

7.3.1

$$i = i_0 + i_{n=1} i_n \cdot \sin(2 \text{ fnt} + n)$$
 (7.1)
 $n = 1, 2, 3, \dots$ $f =$

40~50 ,3kHz	(10kHz~MHz)
(對)	(對) , , (布線)
가	,
	()
(L)	()

7. , ,

7.3.2

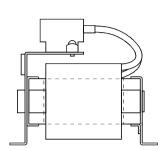
,

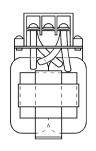
7.4 2 , 3 가

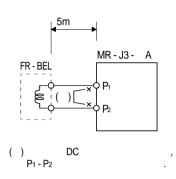
7.4

		n = 4K ± 1 K = 1, 2,	Kn×1/n
3	* * *	n = 6K ± 1 K = 1, 2,	Kn×1/n

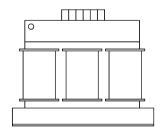
Kn: ,

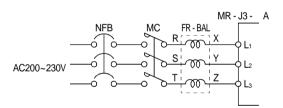

7.3.3

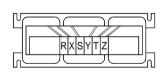

· 가 (FR-BAL

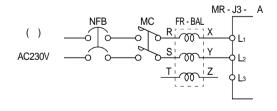

FR-BEL) .

7. , ,






	DC	[mm²]
MR - J3 - 10A · 20A	FR - BEL - 0.4K	
MR - J3 - 40A	FR - BEL - 0.75K	2(AWG14)
MR - J3 - 60A · 70A	FR - BEL - 1.5K	2(AVVG14)
MR - J3 - 100A	FR - BEL - 2.2K	
MR - J3 - 200A	FR - BEL - 3.7K	3.5(AWG12)
MR - J3 - 350A	FR - BEL - 7.5K	5.5(AWG10)


(2) AC (MR-BAL)

(()	AC230V		L1 · L2	, La
٠,	. ,	/ (O_O	,		, _

	AC
MR - J3 - 10A · 20A · 10A1	FR - BAL - 0.4K
MR - J3 - 40A · 20A1	FR - BAL - 0.75K
MR - J3 - 60A · 70A · 40A1	FR - BAL - 1.5K
MR - J3 - 100A	FR - BAL - 2.2K
MR - J3 - 200A	FR - BAL - 3.7K
MR - J3 - 350A	FR - BAL - 7.5K

8. •

AC (aged deteriration), 가 8. 1 AC 가 . P - N 가 가, , 0V 8. 2 (1) 가 가 가. (1) (2) 가. (3) 가. 가. (4) 가. (5) AC (2) 가..... (1) (2) 가) (3) 가.

(4)(5) , , .

				,
	, ,			,
			(1) : -10 ~+70	
			() 90%RH	
	, ,		(가)	,
		,	: -20 ~+65	,
			() 90%RH	
			(가)	
	, 가	,		-
		L1, L2,		,
	가	L3 (相)		,
	(1) ()	(1)		
	가 (2)	(2)	(1)(2)	
	(2) 가	(2)	(1)(2)	
	(3)			
	(1) 가			
•	(2)	(1)(2)	(1)(2)	
	가			
	가?			
	(1)	(1)(2)	(1)(2)	
	가 (2)			
	가,			
	가	(2)	050/	
	(3)	(3)	85%	
	(1)	(1)	(1)	
	가 (2)	(2) ON	(2) 0.1~0.15	
	(3) 가	(3)	(2)	
	(1)	(1) .	(1)	
	가	, (2)		,
	(2)	(2)	(2) ± 10%	

	(1) () , (相)	(1) , U, V, W (相)	(1) (相) 4V	
	(2)	(2)	(2) ,	,
	(1) ,	(1)	(1)	
	가 (2) 가	(2)	(2)	
	7 LED 가	·		
	(1) , アナ (2) ア	(1) , ,	(1)(2)	
	, 가	,		
	(1) , 가	(1)	(1)	
	(2) , 가	(2)	(2)	
	, 가	,		

8. ·

8. 3

, , , , 가 .

:

, ,10 .

: () 10 가

· 2~3 . . .

· V : 5000 Hr

: 5 .

8.2

10		
	-]
	1~3 (2~3)	1 .
	2~3	1
	2~3	가 .
· V	5000	7
	5	7

(ALM)가OFF가 No. No.
. MR Configurator(-가) 가 .MR-J3 , 가 .

\		(2	2)								
		CN1 22	CN1 23	CN1 24							
		(bit2)	(bit1)	(bit0)				OFF	ON	"SET"	(RES
	AL.10	0	1	0							
	AL.12	0	0	0		1					
	AL.13	0	0	0							
	AL.15	0	0	0		2					
	AL.16	1	1	0		1()				
	AL.17	0	0	0							
	AL.19	0	0	0		3					
	AL.1A	1	1	0							
	AL.20	1	1	0		2					
	AL.24	1	0	0							
	AL.25	1	1	0							
	AL.30	0	0	1				(1)		(1)	(1)
	AL.31	1	0	1							
	AL.32	1	0	0							
	AL.33	0	0	1							
	AL.35	1	0	1							
	AL.37	0	0	0							
	AL.45	0	1	1							
	AL.46	0	1	1							
	AL.47	0	1	1							
	AL.50	0	1	1	1			(1)		(1)	(1)
	AL.51	0	1	1	2			(1)		(1)	(1)
	AL.52	1	0	1							
	AL.8A	0	0	0							
	AL.8E	0	0	0							
	88888										
() 1			,	30							
2	. 0 : OFF										

AL.92			
AL.96			
AL.99			
AL.9F			
AL.E0			
AL.E1		1	
AL.E3			
AL.E5	ABS		
AL.E6			
AL.E8			
AL.E9		OFF	
AL.EA	ABS	ON	
AL.EC		2	
AL.ED			

() 1. 2. 0 : OFF

1 : ON

30
• (AL.30)
• 1(AL.50)
• 2(AL.51)
OFF ON, "SET"
(RES) ON 9.1

(ALM)가OFF , 가 No. .

. MR Configurator(-)

AL.10		MR-J3- A: AC160V MR-J3- A1: AC83V MR-J3- A4: AC280V	1	
AL.12	1 (RAM)	RAM		
AL.13			ON (AL.12 · AL.13)	
AL.15	2 (EEP - ROM)	EEP - ROM	1. ON (AL.15) ? 2. EEP - ROM 71 10	·

8. .

			Ī	
AL.16	()		1. (CN2)7\(\frac{2}{3}\). (\(\frac{1}{3}\). (\(\frac{1}\)). (\(\frac{1}{3}\). (\(\frac{1}{3}\). (\(\frac{1}{3}\). (\(\frac{1}{3}\). (\(\frac{1}{3}\). (\(\frac{1}{3}\). (\(\frac{1}\))\). (\(\frac{1}\). (\(\frac{1}\)). (\(\frac{1}\)). (\(\frac{1}\)	No.PC22
AL.17	1	CPU ·		
AL.19	3 (Flash - ROM)	ROM	ON (AL.17 · 19) ?	
AL.1A				
AL.20	2		1. (CN2)7\(\frac{1}{2}\) 3. (\(\frac{1}{2}\)	
AL.24		(U · V · W)	1. 2. 3. 7† U·V·W ON AL.247† ?	
AL.25			1. (가 .) 2. 3. 4	2~3

			1. No.PA02	
			2.	•
			3.	1.
			-	
				2.
				3
			4	
1,1,00			MR - J3 - A : AC260V	
AL.30			MR - J3 - A1 : AC135V . MR - J3 - A4 : AC535V	
			5.	
			6. 가 .	
			2.	•
			?	
			1. 가	
			고가 가	· 가
			기 가 .	1^1
				1.
		71		2.
AL.31		가	3. 가 .	
		·	0. 71	·
				가
			1	· ·
			4	.
			5.	
			1. (U · V · W)	•
			(0 · v · vv)	$ \cdot $
			2. (IPM)	
AL.32		가	U · V · W ON	
, \L.02			(AL.32) ?	
			3. $(U \cdot V \cdot W)$.
			4. 가 .	
L				

		1	
		2.	
		No.PA02 " 00 "(
		.) .	
		3.	1 2
	400)/	· 4. 가 .	
AL.33	400V MR - J3 - B(1) : DC400V	71 .	1. ,
	MR - J3 - B4 : DC800V	5.	
			2. ,
		6.	· 가
		7	
		8. (U · V · W)	
		·	
		1. 가 .	
	가		·
AL.35		2. 가 .	
		3	
		3	
		1.	
		·	
AL.37		2. No.PA02	No.02
/ (2.07	·		
		3. EEP-ROM	
		가10 .	
		1.	
		2. ON/OFF .	
AL.45	가 .	3. 가55	· 가0~55 가
	,		
		4.	
		·	
		1. 가40	가 0~40 가
		•	
	가		1 2.
AL.46	가 .	2. 가 가 .	3.
	·		3.
		3. 가 .	
		.(2.5)	
AL.47		.(2.0)	
	가 가		
	•		•

8. •

			1.	가			1. 2. 3.	
			2.	가			1.가 2.	
							3.	OFF
AL.50	1		3.				1. 2.	
						U・V・W U・V・W가		
			5.	OFF				
					, 가			
			1.				1. 2.	
			2.			U・V・W U・V・W가		
AL.51	2	가					1.가 2.	
AL.51	2	: 1s : 2.5s	3.	가		٠	3.	OFF
			4.					
				OFF	, 가	가		

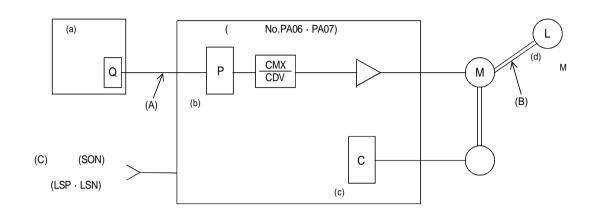
AL.52	7†3 . (1.2)	1.7\ 7\ . 2.	71 1. 2. 1. 2. 3. 1. 2.
AL.8A	RS422 .	1	
AL.8E	(PC) .	1. (.) 2. (PC)	(PC)
() 88888	CPU ·	ON (88888) ?	·

() "8888" , .

8. •

8. 5

가 .


-			
		1	
		2.	
		.()	·
		1.	
	가 .	2 7	
			,
		3. 가 .	
	(LSP LSN) OFF71 .	가 .	LSP · LSN7 F ON
		3.2V .	<u> </u>
	·	()	·
		85%가 .	1.
	-1		2.
	가 .		3.
		1 · 2 85%	
1	1 · 2가 가 .	기 . ·	AL.50 · AL.51
		AL.50, AL.51 .	•
		1. 가 .	
			•
		- 32768 .	
ARS		1.	
7.50		2. (ST2) · (TLC)	
	EMG7†OFF7† .	가 . (EMG OFF .)	,
	가		
	MR - J3 -	,(2.0)	
	70A · 100A		
OFF	OFF ON (SON) ON .		ON .
	ABS	LSN) OFF7 7 1	2. 3V () 7

8. •

AL.EA	ABS ON	7t 1s ON (SON) ON .	1. 2. ON(SON)	
AL.EC	2	U・V・W 가	U·V·W 가 가	1. 2. 3.
AL.ED		(×)가 가	(×)7h 150%	1

8. .

8.6 ()

, (a) · (b) , (c) · (d)

. , (A) , (A)(B)(C)

가 ,

가 가 .

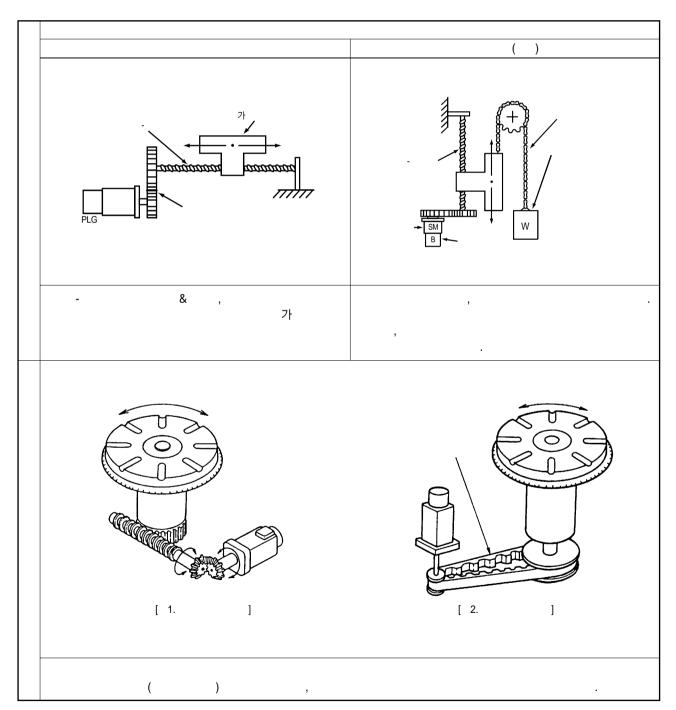
Q=P(

 $P \cdot \frac{\text{CMX(}}{\text{CDV(}}$ No.PA06) No.PA07)

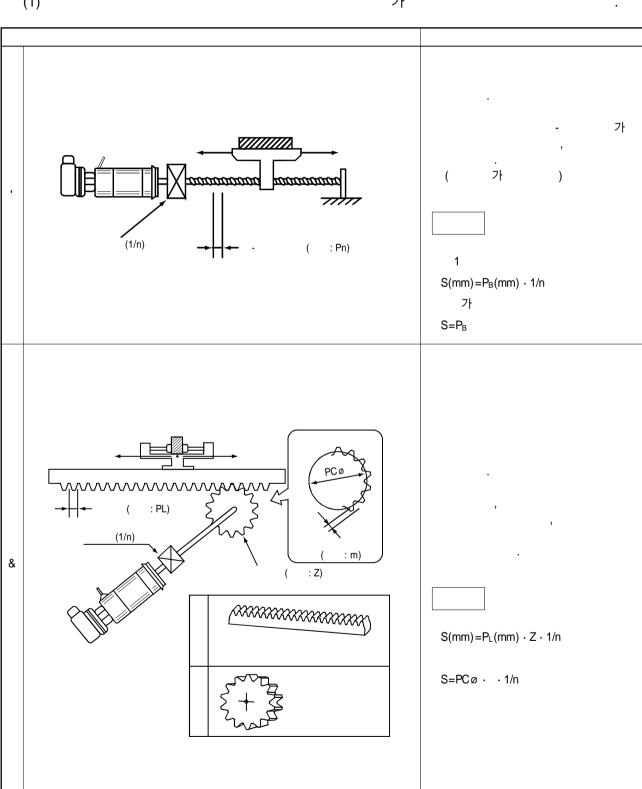
C · =M(**×**1)

QΡ 가 , . (A)

(SON), (LSP·LSN) OFF . ,

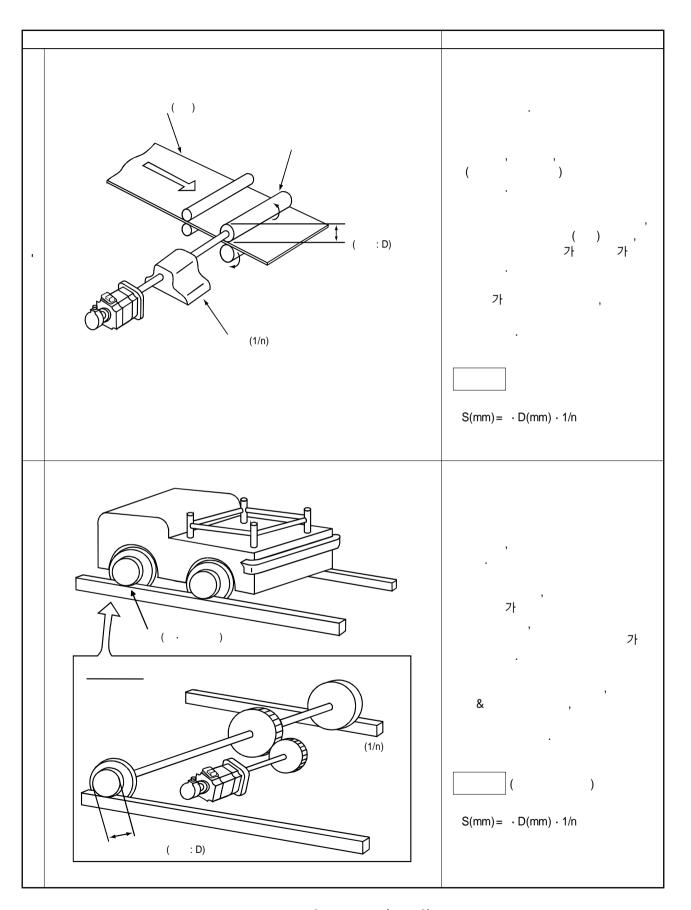

(CR) ON . (D)

C · M 가 ,


1.

Та	:가			[N · m]	Pf	:				[pulse/rev]
Td	:			$[N \cdot m]$	f _{cl}	:				[pps]
T_{Ma}	:가			$[N \cdot m]$	fc	:				[pps]
T_{Md}	:			$[N \cdot m]$	f ₀	:				[pps]
T_L	:			$[N \cdot m]$	Tpsa	:		기		[s]
T_U	:			$[N \cdot m]$	Tpsd	:				[s]
T_F	:			$[N \cdot m]$	Κ _P	:				[s ⁻¹]
T_{LO}	:			$[N \cdot m]$	T _P	:		(TP:	=1/Kp)	[s]
Trms	:			$[N \cdot m]$	0	:		1		[mm/pulse]
T_M	:			$[N\cdotm]$	С	:		1		[mm/pulse]
T_{mmax}	:			$[N\cdotm]$: 1				[mm]
J_L	:			$[kg \cdot cm^2]$	Р	:				[pulse]
J_{LO}	:			$[kg \cdot cm^2]$	t _f	: 1				[s]
J_M	:			$[kg \cdot cm^2]$	to	:				[s]
Nr	:			[r/min]	t _{st}	:				[s]
No	:			[r/min]	t _c	:				[s]
N	:			[r/min]	ts	:		(整正)		[s]
Vo	:			[mm/min]	m	:		(m=JL/JM)		
V	:			[mm/min]		:				[pulse]
P_{B}	: -			[mm]		:				[mm]
Z_1	:				S	:	1			[mm]
Z_2	:						-			
		$1/n = \frac{Z_1}{Z_2}$							S=P _B	
	1/n < 1	, 1/n > 1	(가)					1/n	$S=P_B \cdot 1/n$	

```
1. GD^{2} \qquad , GD^{2}=4 \times J7^{\dagger} \qquad . 2. 1kg \cdot m^{2}=10000kg \cdot cm^{2} \qquad . 3. , \qquad f_{c} \qquad . 1  \qquad c \qquad 1 \qquad ( \qquad ) \qquad .
```



(2) ,1 ,1 ... (1) ... ,1 (: S, :mm) ...

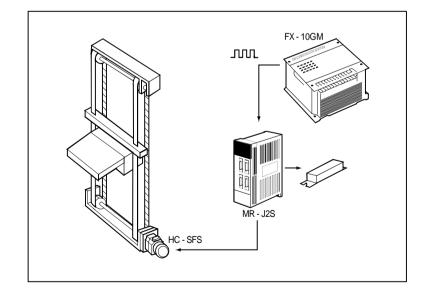
2 (1)

2 (2)

2 (3)

가

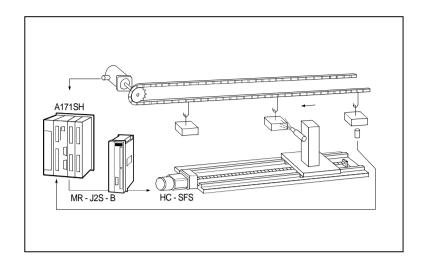
 $\begin{array}{cccc} \text{(1) X - Y} & & & \\ & \text{MELSEC - A} & & , & \\ & & & \text{X - Y} \\ & \text{AC} & & , \end{array}$


HC - KFS MR - J2S AD75 2

(2) () FX - 10GM

.

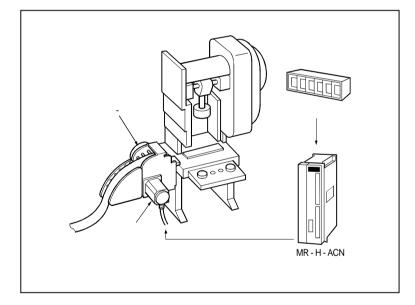
HC - SFS MR - J2S MR - RB FX - 10GM



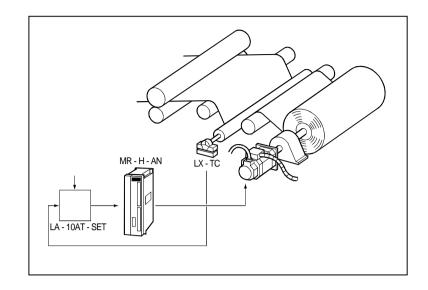
(3)

.

.


HC-SFS MR-J2S-B A171SH

(4) · · AC · , , ,


. 가

HC - SF MR - H - ACN 1

(5) ()

HC-SF MR-HAN LX-TC LA-10AT-SET

MEMO		

							QD75D1	QD75D2	QD75D4
			FX ₂ N-1PG	FX2N - 10PG	FX2N-10GM	FX2N - 20GM	QD75P1	QD75P2	QD75P4
PC			CC - LINK(MN	ET/MINI)			MELSECNET/	Н	
CPU		()	CPU						
				T	Ţ				
I/F		,	0	0					
/F		/							
)		*		+				+	
		INC/ABS	INC/ABS	INC/ABS	INC/	/ABS		INC/ABS	
가			1	1	1	2	1	2	4
			10KPPS	100KPPS	200KPPS	200KPPS	QD75D QD75P	: 1MPPS (: 200KPPS ()
			*	*	*	/	*	1	
			/	/	/	/		/ .	/
					1	2	1	2	4
(I/O)			,	FX2N, FX2NC	FX2N, FX2NC	QCP	U	가 .	
		, I/O				(600 /)			
		,			3.8K	7.8K		(000 ,)	
,					1	2	1	,	,
/									,
							(1 32), .	
		가					CPU~	~	,
			CPU .	CPU .			QD	75.	가
				•	가 .	가 .	(ROM	
		*			J2 - Jr I2S - A			MR - J2 - Jr MR - J2S - A	
		•			J3 - A	٠.		MR - J3 - A I/F	가 .
				1/1	71	•		1/1	
			GX Dev		F-*	20P		(Windows)	
SA	N		FX - FX -			· VPS/WIN	G.	X Configurator - 0	QΡ
CC - Link	•	MR - J29	S-CP-S084				1 42	2 (1), 2
21 가		52		•				\ -	,,=
CC - Link FR - A5	00		- A5NC		1	42 (
)	,	-		•	(,	

3. A273UHCPU

QD70P4	QD70P8	AD75P1-S3 A1SD75P1-S3		AD75P3-S3 A1SD75P3-S3	
MELSECNET/	 Н	MNET(), MN	IET/B(MNET/10)	
CPU					
	+		+		
INC/	'ABS	INC/(AI ABS	BS), ABS		
4	8	1	2	3	
	(PPS		: 400ki		
*	*	*	/		
/			/ .	/	
4	8	1	2	3	
QCPU	가 .	ACP	U	가 .	
(10	/)	(600 100	/ CPU / 7	가)	
	,	1	, /	,	
(1 32 CPU~), .	(1 32 CPU~), . FROM/TO		
, ,	가 ROM)	AC 가	075, ROM		
MR - MR - MR -	/ J2 - Jr J2S - A · J3 - A I/F フト .	MR - J2 - Jr MR - J2S - A MR - J3 - A I/F 7ト.			
(Windo GX Configi	ows) urator - QT	(1	(Windows) K Configurator - / DOS/V, PC98 PC SW*NX - AD75F SW*IVD - AD75F	C)	

가 . INV, INV 가 5. SFC() Windows - NT . A171SH 6. I/F () MR - J2 - A, 6. 가 . 7. -MR - J2S - A, MR - J2S - B 가 . 8. QD75M, AD75M(A1SD75M)

		QD75M1	QD75M2	QD75M4	AD75M1 A1SD75M1	AD75M2 A1SD75M2	AD75M3 A1SD75M3
PC		MELSECNET/H			MNET(), MNE		TTODYONO
CPU	_ () _ /	CPU					
	,						
			<u> </u>	<u> </u>			
		7	J	J		Ţ	J
I/F	/						
	*		+			+	
()	INC/ABS		INC/ABS			INC/ABS	
<u></u> 가		1	2	4	1	2	3
			ı	I		ı	1
		*	/		*	/	
			. / .	/		/ / .	
		1	2	4	1	2	3
		QCI	PU 7	'\ .	ACI	PU 7	ነት .
	(I/O) ()	(ABS	(600 /))	(600 / , CPU (ABS	100) / 가)
1		1		,	1	, ,	,
		(1 32), ,	CPU~	(1 32 FROM/TC), ,	CPU~
	가	~		CNET ,	~ ON		NET ,
		ON	Y1 . 가()	ABS		가.)
		QD75M		가 가.	AD75M	,	´. 가 가
	*	MR - H - E	MR - J2 - B MR - J2S - B SN(- < >	가)	MR - H - B	MR - J2 - B MR - J2S - B SN(- >	가)
S/W		C	(Windows) GX Configurator - Q	P		(Windows) GX Configurator - Al (DOS/V, PC98 PC) SW*NX - AD75P	
>					<u> </u>	SW*IVD - AD75P	
CC - Link 21 가 .	MR - J29	S - CP - S084			1	42 (1), 2
CC - Link FR - A500		- A5NC .		1	42 (,	
FR - E500 A273UHCPU) FR - E520 - 0.	1KN~FR - E520	- 7.5KN				

- 12

Q172CPUN	Q173CPUN	A171SH CPU	A172SH CPU	A173UH CPU	A273UH CPU	MR-J2S- CP			
MEI SECNET/L	MELSECNET/H MNET(), MNET/B(MNET/10)								
IVIELSECINE 1/H									
					工				
	T			T	丁				
	The second second		The second second	P	P				
					•				
						-			
		(NC SV	+ 42)			1			
		INC/AE	3S			INC/ABS			
8	32	4	8	32	32	1			
						-			
		/				*			
		/ /	. /						
max 8	max 32	max 4	max 8	max 32	max 32	1			
QCPU CPU	가 .()	A2SH	A2SH - S1 I/O=1024	A3U I/O=2048	A3U I/O=2048				
Q25HCP 1/0=2		I/O=512 14K	30K	60K	60K	I/O			
34ns	<i>\</i>	0.25 µs/	0.25 µs/	0.15 µs/	0.15 µs/				
		4 ,2 / ,	,						
		, ,	,						
	21/1	, NC	(SV43)						
		3/SV22/SV43/S' ~	SSCNET			가 .			
	ABS		가						
		MR - J2 MR - J25							
	MR - I	H - BN(-	가)		MR - J2S - CP			
		<	>						
	,	(DC OS)S/V, PC98 PC) (: SW*SRX - S	MS - DOS) SV13/SW*NX - S	SV13				
	ows) veloper		: SW*SRX - G	SSV13/22	-	PC			
			: SW** - CAN						

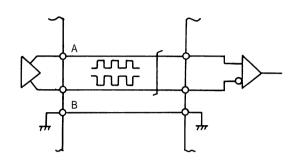
```
4.

5. SFC( ) Windows - NT . A171SH 7 .

6. I/F ( ) MR - J2 - A, INV, INV 7 .

7 .

7. - MR - J2S - A, MR - J2S - B 7 .


8. QD75M, AD75M(A1SD75M) ,
```

5. 가 , 가 가 (가 , 360 8~12 가 7 Gv(s) $=K_p \cdot Gv(s) = K_p (1/sec)$ Kp= pc(rad/sec)가 . 63% .(「가 」

, 가 .	,		
 , , , 가 , 가 .			,
() LSI IC			
, 가 가	(,)	,
가 . 가 .			
 , 가		, 가가	
가 . 	,		
() Hz(. fHz 2 frad/sec 가) .	()
<u>' I </u>			

- 15

```
) 가 ,가
     1
                                             가
                   가
                                                         63.5%
                                                                         N<sub>1</sub>
      0.632No
                                                                         N_2
   1
                      가
                                                  to:
                                                                   가 =가
      가
                가
                                                  t1:
                                                             N<sub>1</sub>
                                                                      가
                                                                      가
                                                  t2:
                                                             N_2
가
                ,가
가
                                                                                   가
                                                          ( m/s<sup>2</sup> )
              J=m \cdot r^2
                           [kg \cdot cm^2]
                     J:
                             [kg]
                     m:
                            [cm]
                     r:
                                                                               r( )
                                               GD²가
       2r(
            )
            GD^2 = m \cdot (2r)^2 = 4J
             가
             가
                                                 가
                                                          .(
                                                                                 가
             ,
가
```


. 10r/min . 10r/min . (, rad/sec.) , fc(Hz)

·

, . . K1

+ Kv K1 JL+JM) S

 $= \frac{K1 \cdot K_{V}}{J_{M} + J_{L}} \qquad . \qquad \qquad \frac{K_{V}:}{J_{L}:} \\ J_{M}:$

가 .

. IM . .

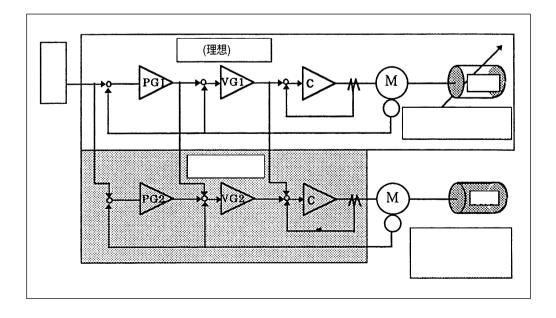
(), 가 ±1 (U, V, W) P, N), (整定) 가 , 가 ts 3Тр (Tp: 가 가 가 가 (無勵)

- 18

가

- 0.33/ - 0.2/ ,

가 가

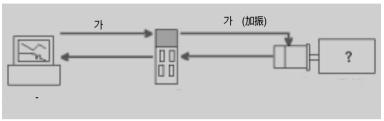

 $Q = \frac{TR^2}{J_M} \times 10 \text{ [kW/s]}$

TR : $[N \cdot m]$ $JM : [kg \cdot cm^2]$

Y가, 가 1 Y= Kp

가 . 가

가



(1) (2) (3) 3 (PG1) ,가 가 가) Ы 가 가 가, 가 가 가

AC

- 20

가 0.1~2 가 (加振) , , MR Configurator가 . , 가 가 가 가 가

. , , , . . .

, , 가 .

, 가 .

- 22

6. (1) JIS JP 6.1 1 , 6.2 2) JP 4 4 6.2) 6.1) E, () W, (JPW44) E, C 1EC 6.1 (固形) (1) (無) 0 (誘導) (半) 1 50mm 가 2 12mm 가 1mm (誘電) 4 1mm 2 (誘電) 5 6.2 (2)

(無)	0	
(防滴)	2	15 °
(防雨)	3	60 °
(防沫)	4	
(防噴流)	5	
(防波浪)	6	
(防浸)	7	,
(水中)	8	

6.3 (固形) (1)

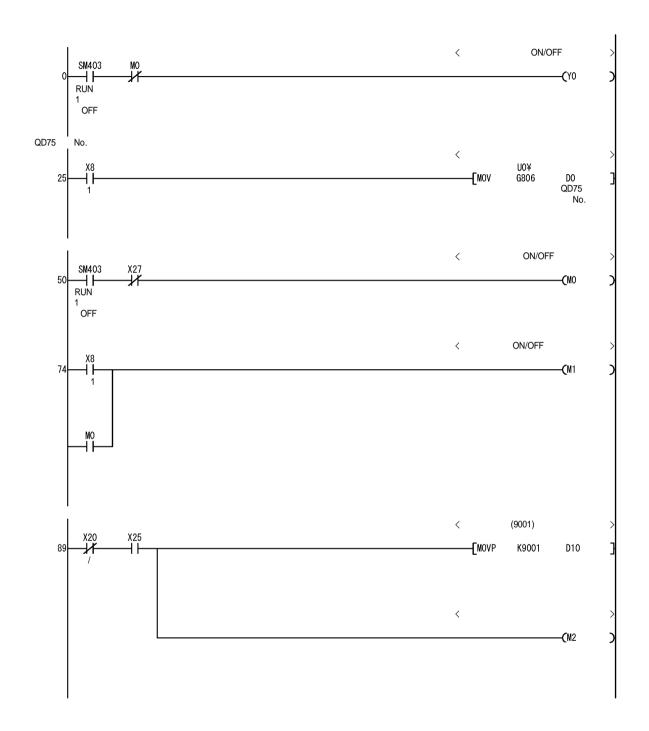
(無)	0	(非)
50mm	1	, 50mm .
12.5mm	2	가 ,12mm .
2.5mm	3	, 2.5mm .
1.0mm	4	, 1.0mm .
	5	
	6	·

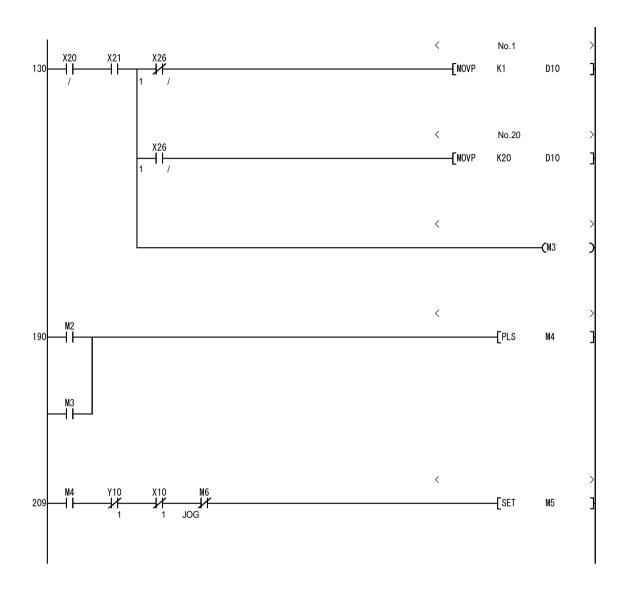
6.4 (2)

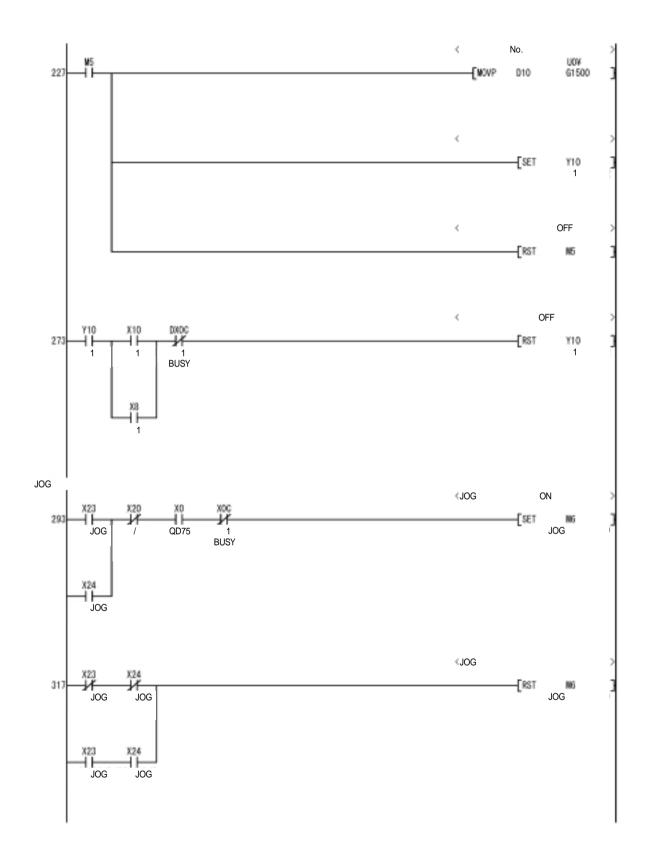
(無)	0	(非)		
	1	(復水) ,		
(15)	2			
(散水)	3			
(飛沫)	4	(飛沫水)		
(噴流)	5	(噴流水)		
(暴噴流)	6	(噴流水)		
	7	150mm 1m , .		
	8	가 . 가 .		

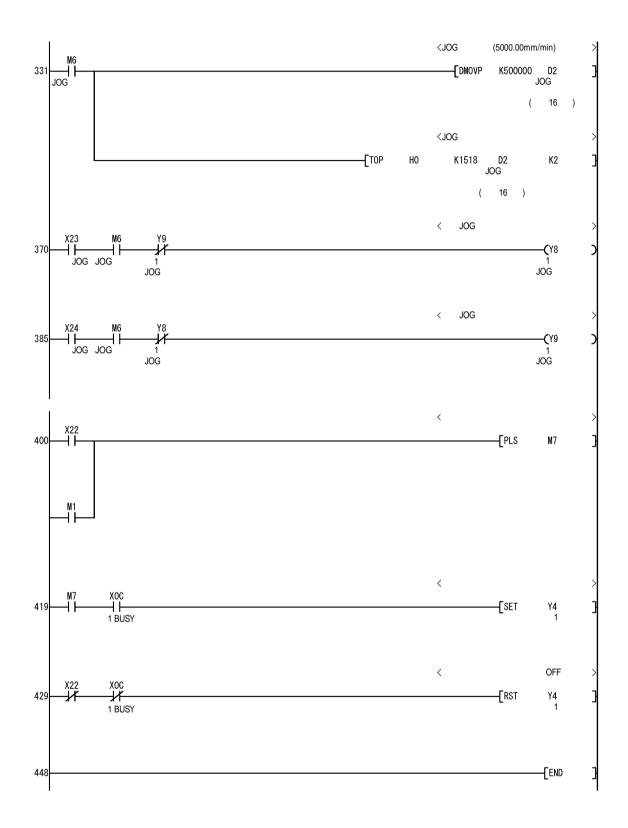
7. QD75D4 ()

(1) (1)


1				
1 100 μm 1			0	mm
1		1	1pls	
1		1	10.0 µm	
1 CW/CCW	1		1	×1
0.00mm/min 600000.00mm/min 7† 0	'		1	CW/CCW
600000.00mm/min 10ms 10ms 0.0 μm 214748364.7 μm -214748364.8 μm 0 100.0 μm 300% M ON			0	가
7 1 0 10ms 10ms			0.00mm/min	
1 10ms			600000.00mm/min	
1 10ms		가 0	10ms	
214748364.7 µm -214748364.8 µm 0	2		10ms	
214748364.7 µm -214748364.8 µm 0			0.0 µm	
- 214748364.8 μm - 214748364.8 μm - 1 - 1 - 1 - 1 - 1 - 300% - M ON				
1				
1 100.0 μm 300% M ON 0 WITH 0 0 (E, +) 1 (E, +) 0 (f, -) 0 (f, -)				
M ON		1	1	
M ON			100.0 um	
M ON 0 WITH 0 0				
1		M ON		WITH
1				
1				
1 (正,+)				
1 (正, +) 0 (負, -) 0 A /B	1			(正,+)
0 (負, -) 0 A /B				
0 (負, -) 0 A /B				
0 (負, -) 0 A /B 0 A /B				
0 (負, -) 0 A /B				
0 (負, -) 0 (負, -) 0 (負, -) 0 (負, -) 0 A /B				
0 (負, -) 0 (負, -) 0 (負, -) 0 (負, -) 0 A /B				
0 (負, -) 0 (負, -) 0 A/B				
0 (負, -) 0 A /B				
0 A /B				
				A /B
I I (INC)			0	


	가 1	10ms		
	가 2	50ms		
	가 3	1000ms		
	1	10ms		
	2	50ms		
	3	1000ms		
	JOG	60000.00mm/min		
	JOG 가	0	10ms	
	JOG	0	10ms	
2	가	0	가	
	S	100%		
		1000ms		
	1	0		
	2	0		
	3	0		
		300ms		
		10.0 µm		
		0		
		0		
		1	(負, -) ()
		0.0 µm		
		5000.00mm/min		
		1000.00mm/min		
		1		
		0ms		
	ON	0.0 µm		
	가	3	1000ms	
		3	1000ms	
		0.0 µm		
		300%		
		11ms		
		0		
		0ms		


(2) (1)


No.			가						М
1	1:	2:INC 1	0:10ms	0:10ms	-	- 50000.0	50000.00	500	0
2	1:	2:INC 1	0:10ms	0:10ms	-	50000.0	50000.00	500	0
3	1:	2:INC 1	0:10ms	0:10ms	-	- 100000.0	100000.00	500	0
4	1:	2:INC 1	0:10ms	0:10ms	-	50000.0	50000.00	500	0
5	1:	2:INC 1	0:10ms	0:10ms	-	- 100000.0	100000.00	500	3
6	1:	2:INC 1	0:10ms	0:10ms	-	50000.0	50000.00	500	0
7	1:	2:INC 1	0:10ms	0:10ms	-	- 50000.0	50000.00	500	0
8	1:	2:INC 1	0:10ms	0:10ms	-	150000.0	200000.00	500	0
9	1:	2:INC 1	0:10ms	0:10ms	-	- 75000.0	100000.00	500	0
10	1:	2:INC 1	0:10ms	0:10ms	-	- 75000.0	1000.00	1000	0
11	1:	2:INC 1	0:10ms	0:10ms	-	75000.0	100000.00	500	0
12	1:	2:INC 1	0:10ms	0:10ms	-	75000.0	1000.00	1000	0
13	1:	2:INC 1	0:10ms	0:10ms	-	- 150000.0	200000.00	1000	0
14	0:	2:INC 1	0:10ms	0:10ms	-	150000.0	200000.00	2000	0
15	0:	0:	0:10ms	0:10ms	-	0.0	0.00	0	0
16	0:	0:	0:10ms	0:10ms	-	0.0	0.00	0	0
17	0:	0:	0:10ms	0:10ms	-	0.0	0.00	0	0
18	0:	0:	0:10ms	0:10ms	-	0.0	0.00	0	0
19	0:	0:	0:10ms	0:10ms	-	0.0	0.00	0	0
20	1:	2:INC 1	0:10ms	0:10ms	-	0.0	1000.00	0	0
21	0:	Y:LOOP	0:10ms	0:10ms	-	0.0	0.00	0	65535
22	1:	2:INC 1	0:10ms	0:10ms	-	- 50000.0	50000.00	500	0
23	1:	2:INC 1	0:10ms	0:10ms	-	50000.0	50000.00	500	0
24	1:	2:INC 1	0:10ms	0:10ms	-	- 100000.0	100000.00	500	0
25	1:	2:INC 1	0:10ms	0:10ms	-	50000.0	50000.00	500	0
26	1:	2:INC 1	0:10ms	0:10ms	-	- 100000.0	100000.00	500	3
27	1:	2:INC 1	0:10ms	0:10ms	-	50000.0	50000.00	500	0
28	1:	2:INC 1	0:10ms	0:10ms	-	- 50000.0	50000.00	500	0
29	1:	2:INC 1	0:10ms	0:10ms	-	150000.0	200000.00	500	0
30	1:	2:INC 1	0:10ms	0:10ms	-	- 75000.0	100000.00	500	0
31	1:	2:INC 1	0:10ms	0:10ms	-	- 75000.0	1000.00	1000	0
32	1:	2:INC 1	0:10ms	0:10ms	-	75000.0	100000.00	500	0
33	1:	2:INC 1	0:10ms	0:10ms	-	75000.0	1000.00	1000	0
34	1:	2:INC 1	0:10ms	0:10ms	-	- 150000.0	200000.00	1000	0
35	1:	2:INC 1	0:10ms	0:10ms	-	150000.0	200000.00	2000	0
36	0:	Z:LEND	0:10ms	0:10ms	-	0.0	0.00	0	0
37	0:	2:INC 1	0:10ms	0:10ms	-	0.0	1000.00	0	0

(3)

MEMO

MEMO

MEMO

AC

韓國三菱電機AUTOMATION(株)

: 157-200 가 1480-6

TEL. 02)3660-9515~19 FAX. 02)3664-8372/8335

: 617-726 578

가 206

TEL. 051)319-3747~9 FAX. 051)319-3768

: 702-845 2 1666

603

TEL. 053)604-6047 FAX. 053)604-6049

F.A : 가 1480-6 2F

TEL. 02)3660-9607 FAX. 02)3663-0475

http://www.mitsubishi-automation.co.kr

SH()-3171-J(0407)MEE() () 2007 2